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What you will learn

The role and context of cell-cell communication

Single-cell RNA sequencing for cellular transcriptomes
General principles of cell-cell communication detection

Inner workings of select single-cell RNA sequencing methods
Spatial transcriptomics for communication detection

Spatially-resolved cell-cell communication method



Cells communicate through intercellular signaling mechanisms
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Cells communicate through intercellular signaling mechanisms




Ligands initiate different cell-cell communication mechanisms
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Communication triggers downstream cellular functionality
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Genes involved in cell-cell communication are differentially expressed
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Hypothesis

Cell-cell communication contributes to progression and poor therapy response




Single-cell sequencing enables cell resolution analysis




Single-cell sequencing enables cell resolution analysis

Bulk Sequencing




Single-cell sequencing enables cell resolution analysis

Bulk Sequencing

Single-cell Sequencing




Single-cell transcriptomics is exponentially increasing
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Single-cell transcriptomics is exponentially increasing
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Microfluidics has high accuracy and throughput

|

0000008
o
o
10x Barcoded Cells
Gel Beads Enzyme

Y

Qil

®e

Pool

Collect Remove Oil
.,/ \ %
1 | = |
5 J
- ,r'//
Single Cell 10x Barcoded 10x Barcoded
GEMs cDNA cDNA

Transcriptional profiling of individual cells



Microfluidics has high accuracy and throughput

Drop-seq (HyDrop)



file:///home/gw/OneDrive/work/img/presentations/microfluidics/dropgen.avi
https://hydrop.aertslab.org/

Typical workflow collapses many dimensions to only two
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Typical workflow collapses many dimensions to only two
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Typical workflow collapses many dimensions to only two
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CellPhoneDB introduced a well-curated data set of signals
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CellPhoneDB introduced a well-curated data set of signals
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Flat table structure holds molecular interactions

id_interaction id_cp_interaction multidata_1_id multidata_2_id source annotation_strategy is_ppi curator directi ity ifi ]

0 CPI-SC0A2DB962D 329 1507 PMID:12392763 curated True  RVentoTormo Adhesion-Adhesion Adhesion by Cadherin

1 CPI-SCOB5CEA47D 716 1507  uniprot curated True RVentoTormo Adhesion-Adhesion  Adhesion by Collagen/Integrin
2 CPI-SC0C8B7BCBB 322 1507  uniprot curated True  RVentoTormo Adhesion-Adhesion  Adhesion by Collagen/Integrin
3 CPI-SCOD3C12C3F 343 1507  uniprot curated True  RVentoTormo Adhesion-Adhesion Adhesion by Collagen/Integrin
4 CPI-SC0B86B7CED 930 1507  uniprot curated True RVentoTormo Adhesion-Adhesion  Adhesion by Collagen/Integrin
5 CPI-SCOFA343CEF 810 1507  uniprot curated True  RVentoTormo Adhesion-Adhesion Adhesion by Collagen/Integrin
6 CPI-SCOCCCF9A7F 720 1507  uniprot curated True RVentoTormo Adhesion-Adhesion  Adhesion by Collagen/Integrin
7 CPI-SCOE85E1FBO 1347 1507  uniprot curated True  RVentoTormo Adhesion-Adhesion  Adhesion by Collagen/Integrin




Flat table structure holds molecular interactions

id_multidata name receptor receptor_desc other other_desc secreted_highlight secreted _desc transmembrane secreted peripheral integrin is_complex
P03372  True False False False False True False False
Q92753  True False False False False False False False
095477  False False False True False False False False
Q13133  True False False False False False False False
P04150  True False False False False False False False

Q9UNN8  True False False False False False False False
Q96LR4  False False True False True False False False
060883  True False False True False False False False
Q96RI1 True False False False False False False False
P30533  False False False False False False False False

0
1
2
3
4
5 Q7Z5A7 False False True False True False False False
6
7
8
9
0




CellPhoneDB compares high expression of each cell cluster
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Pre-set thresholds control for noise

Only ligands and receptors in >10% of cells considered
Randomly permute cluster labels 1000 times
Calculate proportion of means “more extreme” than observed

The minimum of protein dimers are considered



CellPhoneDB compares high expression of each cell cluster
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Cell-cell communication algorithms decipher ligand-receptor pairs
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Cell-cell communication algorithms decipher ligand-receptor pairs
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CellChat alternatively uses law of mass action
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CellChat’s estimation is based on Hill equations

_ [
Kq + [L]"

0 = Fraction of receptor protein bound by ligand

[L] = Ligand concentration

Ky = Dissociation constant from law of mass action (half binding)
n = Hill coefficient




CellChat’s estimation is based on Hill equations
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CellChat’s estimation is based on Hill equations
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CellChat’s estimation is based on Hill equations
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CellChat’s estimation is based on Hill equations
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CellChat’s estimation is based on Hill equations
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CellChat’s estimation is based on Hill equations
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CellChat’s estimation is based on Hill equations
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Many alternative methods exist

CellPhoneDB
CellChat
Connectome
SingleCellSignalR
Scriabin

NATMI



LIANA aggregates many resources and methods

Methods
CellPhoneDB Connectome
CellChat NATMI  logFC

SingleCellSignalR
Crosstalk Scores

#®  Resources Y
ConnectomeDB  CeliTalkDB
CellPhoneDB Ramilowski
CellChatDB ~ OmniPath
+ 10 others

Cell-Cell Communication

Y




What to do next?

Traditional differential expression analysis
Traditional pathway analysis

Cliques

Graph centrality

Vertex hubs



Cliques show highly-connected communities
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Graph centrality identifies vertices with easy access to most of the network

B § LTI Sy
F Katz

ror $ LIRS
E Harmonic

Least central Most central



Hubs reveal highly visited vertices
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Hypothesis

Cell-cell communication contributes to progression and poor therapy response




Hypothesis

Cell-cell communication contributes to progression and poor therapy response

A single transcriptomic layer is insufficient to test this hypothesis
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What about spatial transcriptomic data”?




Spatial transcriptomics spatially resolves gene expression
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Spatial information paired with molecular profiles is a powerful tool




Spatial information paired with molecular profiles is a powerful tool
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Spatial transcriptomics reveals pancreatic ductal adenocarcinoma signatures
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Graph convolutional networks learn node embeddings for downstream
analysis




Graph convolutional networks learn node embeddings for downstream
analysis




Graph convolutional networks learn node embeddings for downstream
analysis




Graph convolutional networks learn node embeddings for downstream

analysis
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Graph convolutional networks learn node embeddings for downstream
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Graph convolutional networks learn node embeddings for downstream

analysis
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Graph convolutional networks learn node embeddings for downstream
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Graph convolutional networks learn node embeddings for downstream

analysis
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How do we learn without a training set?




Graph convolutional networks learn node embeddings for downstream
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Graph convolutional networks learn node embeddings for downstream
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Graph convolutional networks learn node embeddings for downstream
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Graph convolutional networks learn node embeddings for downstream
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Graph convolutional networks learn node embeddings for downstream
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Graph convolutional networks learn node embeddings for downstream
analysis
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Our model better incorporates spatial cell organization
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Our model better incorporates spatial cell organization
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Our model better incorporates spatial cell organization
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The microenvironment may influence subtype
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Graph attention networks learn communication
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Graph attention networks learn communication
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Graph attention networks learn communication




Graph attention networks learn communication
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Graph attention networks learn communication




Graph attention networks learn communication
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Do you use an attention model?

Yes, as a language model, I use an attention mechanism to help me understand the
relationships between different words and phrases in a given text sequence. The

attention mechanism allows me to assign varying levels of importance to different

parts of the input text, which helps me generate more accurate and meaningful

responses. This attention mechanism is a key component of many advanced language
models, including the GPT (Generative Pre-trained Transformer) family of models,

which I am a part of.




Graph attention networks learn communication




Graph attention networks learn communication
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Graph attention networks learn communication
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Graph attention networks learn communication
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Our model detects cell-cell communication patterns
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Our model detects cell-cell communication patterns




NEST identifies localized CCL19-CCR7 in lymph node
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NEST identifies localized CCL19-CCR7 in lymph node
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NEST identifies localized CCL19-CCR7 in lymph node
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NEST identifies localized CCL19-CCR7 in lymph node
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NEST identifies localized CCL19-CCR7 in lymph node
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NEST identifies localized CCL19-CCR7 in lymph node
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NEST identifies localized CCL19-CCR7 in lymph node
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NEST reveals spatially dependent communication in situ
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NEST reveals spatially dependent communication in situ
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NEST reveals spatially dependent communication in situ
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NEST reveals spatially dependent communication in situ
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NEST reveals spatially dependent communication in situ




NEST reveals spatially dependent communication in situ




What was covered within this module

The role and context of cell-cell communication

Single-cell RNA sequencing for cellular transcriptomes
General principles of cell-cell communication detection

Inner workings of select single-cell RNA sequencing methods
Spatial transcriptomics for communication detection

Spatially-resolved cell-cell communication method
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