

Canadian Bioinformatics Workshops

www.bioinformatics.ca bioinformaticsdotca.github.io

ං CC BY-SA 4.0 DEED

Attribution-ShareAlike 4.0 International

Canonical	URL : <u>https://creativecommons.org/licenses/by-sa/4.0/</u>	See the legal code
You are	e free to:	
	Share — copy and redistribute the mat purpose, even commercially.	erial in any medium or format for any
	Adapt — remix, transform, and build u commercially.	pon the material for any purpose, even
	The licensor cannot revoke these freed terms.	oms as long as you follow the license
Under	the following terms:	
٢	Attribution — You must give <u>appropria</u> and <u>indicate if changes were made</u> . Yo but not in any way that suggests the lice	<u>tte credit</u> , provide a link to the license, u may do so in any reasonable manner, rensor endorses you or your use.
0	ShareAlike — If you remix, transform, distribute your contributions under the	or build upon the material, you must e <u>same license</u> as the original.
	No additional restrictions — You may <u>measures</u> that legally restrict others fro	not apply legal terms or <u>technological</u> om doing anything the license permits.
Notice	s:	
You do no domain c	ot have to comply with the license for ele or where your use is permitted by an app	ments of the material in the public licable <u>exception or limitation</u> .
No warra your inter may limit	nties are given. The license may not give nded use. For example, other rights such : how you use the material.	you all of the permissions necessary for as <u>publicity, privacy, or moral rights</u>

Module #6: Cell-Cell Communication

Gregory Schwartz Pathway and Network Analysis June 26-28, 2024

The role and context of cell-cell communication

Single-cell RNA sequencing for cellular transcriptomes

General principles of cell-cell communication detection

Inner workings of select single-cell RNA sequencing methods

Spatial transcriptomics for communication detection

Spatially-resolved cell-cell communication method

Cells communicate through intercellular signaling mechanisms

Cells communicate through intercellular signaling mechanisms

Ligands initiate different cell-cell communication mechanisms

Communication triggers downstream cellular functionality

Cancer heterogeneity can reduce the efficacy of therapy

Genes involved in cell-cell communication are differentially expressed

FLT3

Notch1

Promoter

Cell-cell communication contributes to progression and poor therapy response

Single-cell sequencing enables cell resolution analysis

Single-cell sequencing enables cell resolution analysis

Single-cell sequencing enables cell resolution analysis

Single-cell transcriptomics is exponentially increasing

Single-cell transcriptomics is exponentially increasing

Microfluidics has high accuracy and throughput

bioinformatics.ca

10x Genomics

Drop-seq (HyDrop)

Typical workflow collapses many dimensions to only two

Typical workflow collapses many dimensions to only two

Typical workflow collapses many dimensions to only two

CellPhoneDB introduced a well-curated data set of signals

CellPhoneDB introduced a well-curated data set of signals

id_interaction	id_cp_interaction	multidata_1_id	multidata_2_id	source	annotation_strategy	is_ppi	curator	directionality	classification
0	CPI-SC0A2DB962D	329	1507	PMID:12392763	curated	True	RVentoTormo	Adhesion-Adhesion	Adhesion by Cadherin
1	CPI-SC0B5CEA47D	716	1507	uniprot	curated	True	RVentoTormo	Adhesion-Adhesion	Adhesion by Collagen/Integrin
2	CPI-SC0C8B7BCBB	322	1507	uniprot	curated	True	RVentoTormo	Adhesion-Adhesion	Adhesion by Collagen/Integrin
3	CPI-SC0D3C12C3F	343	1507	uniprot	curated	True	RVentoTormo	Adhesion-Adhesion	Adhesion by Collagen/Integrin
4	CPI-SC0B86B7CED	930	1507	uniprot	curated	True	RVentoTormo	Adhesion-Adhesion	Adhesion by Collagen/Integrin
5	CPI-SC0FA343CEF	810	1507	uniprot	curated	True	RVentoTormo	Adhesion-Adhesion	Adhesion by Collagen/Integrin
6	CPI-SC0CCCF9A7F	720	1507	uniprot	curated	True	RVentoTormo	Adhesion-Adhesion	Adhesion by Collagen/Integrin
7	CPI-SC0E85E1FB0	1347	1507	uniprot	curated	True	RVentoTormo	Adhesion-Adhesion	Adhesion by Collagen/Integrin

Flat table structure holds molecular interactions

id_multidata	name	receptor	receptor_desc	other	other_desc	secreted_highlight	secreted_desc	transmembrane	secreted	peripheral	integrin	is_complex
0	P03372	True		False		False		False	False	True	False	False
1	Q92753	True		False		False		False	False	False	False	False
2	O95477	False		False		False		True	False	False	False	False
3	Q13133	True		False		False		False	False	False	False	False
4	P04150	True		False		False		False	False	False	False	False
5	Q7Z5A7	False		False		True		False	True	False	False	False
6	Q9UNN8	True		False		False		False	False	False	False	False
7	Q96LR4	False		False		True		False	True	False	False	False
8	O60883	True		False		False		True	False	False	False	False
9	Q96RI1	True		False		False		False	False	False	False	False
10	P30533	False		False		False		False	False	False	False	False

CellPhoneDB compares high expression of each cell cluster

Only ligands and receptors in >10% of cells considered

Randomly permute cluster labels 1000 times

Calculate proportion of means "more extreme" than observed

The minimum of protein dimers are considered

CellPhoneDB compares high expression of each cell cluster

Vento-Tormo et al. Nature, 2018.

Cell-cell communication algorithms decipher ligand-receptor pairs

Cell-cell communication algorithms decipher ligand-receptor pairs

Erick Armingol et al., Nature Reviews Genetics, 2021.

CellChat alternatively uses law of mass action

CellChat's estimation is based on Hill equations

$$\theta = \frac{[L]^n}{K_d + [L]^n}$$
(1)

$$\theta = \text{Fraction of receptor protein bound by ligand}$$

$$[L] = \text{Ligand concentration}$$

$$K_d = \text{Dissociation constant from law of mass action (half binding)}$$

$$n = \text{Hill coefficient}$$

CellChat's estimation is based on Hill equations

$$\begin{split} P_{i,j}^{k} = & \frac{L_{i}R_{j}}{K_{h} + L_{i}R_{j}} \times \left(1 + \frac{AG_{i}}{K_{h} + AG_{i}}\right) \cdot \left(1 + \frac{AG_{j}}{K_{h} + AG_{j}}\right) \\ & \times \frac{K_{h}}{K_{h} + AN_{i}} \cdot \frac{K_{h}}{K_{h} + AN_{j}} \times \frac{n_{i}n_{j}}{n^{2}}, \\ L_{i} = & \sqrt[m_{1}]{L_{i,1} \cdots L_{i,m1}}, R_{j} = & \sqrt[m_{2}]{R_{j,1} \cdots R_{j,m2}} \cdot \frac{1 + RA_{j}}{1 + RI_{j}}. \end{split}$$

CellChat's estimation is based on Hill equations

CellPhoneDB

CellChat

Connectome

SingleCellSignalR

Scriabin

NATMI

. . .

LIANA aggregates many resources and methods

Traditional differential expression analysis

Traditional pathway analysis

Cliques

Graph centrality

Vertex hubs

Cliques show highly-connected communities

Graph centrality identifies vertices with easy access to most of the network

Hubs reveal highly visited vertices

Cell-cell communication contributes to progression and poor therapy response

Cell-cell communication contributes to progression and poor therapy response A single transcriptomic layer is insufficient to test this hypothesis

Cell lines exhibit minimal change in expression when treated with ligands

What about spatial transcriptomic data?

Spatial transcriptomics spatially resolves gene expression

Spatial information paired with molecular profiles is a powerful tool

Spatial information paired with molecular profiles is a powerful tool

bioinformatics.ca

How do we learn without a training set?

bioinformatics.ca

Our model better incorporates spatial cell organization

Our model better incorporates spatial cell organization

Our model better incorporates spatial cell organization

The microenvironment may influence subtype

Do you use an attention model?

Yes, as a language model, I use an attention mechanism to help me understand the relationships between different words and phrases in a given text sequence. The attention mechanism allows me to assign varying levels of importance to different parts of the input text, which helps me generate more accurate and meaningful responses. This attention mechanism is a key component of many advanced language models, including the GPT (Generative Pre-trained Transformer) family of models, which I am a part of.

Our model detects cell-cell communication patterns

Our model detects cell-cell communication patterns

The role and context of cell-cell communication

Single-cell RNA sequencing for cellular transcriptomes

General principles of cell-cell communication detection

Inner workings of select single-cell RNA sequencing methods

Spatial transcriptomics for communication detection

Spatially-resolved cell-cell communication method

We are on a Coffee Break & Networking Session

Workshop Sponsors:

