

Canadian Bioinformatics Workshops

www.bioinformatics.ca bioinformaticsdotca.github.io

ං CC BY-SA 4.0 DEED

Attribution-ShareAlike 4.0 International

Canonical	JRL : https://creativecommons.org/licenses/by-sa/4.0/	See the legal code
/ou are	e free to:	
	Share — copy and redistribute the mapurpose, even commercially.	terial in any medium or format for any
	Adapt — remix, transform, and build u commercially.	ipon the material for any purpose, even
	The licensor cannot revoke these free terms.	doms as long as you follow the license
Jnder t	he following terms:	
٢	Attribution — You must give <u>appropri</u> and <u>indicate if changes were made</u> . Yo but not in any way that suggests the li	<u>ate credit</u> , provide a link to the license, ou may do so in any reasonable manner, censor endorses you or your use.
0	ShareAlike — If you remix, transform, distribute your contributions under th	or build upon the material, you must e <u>same license</u> as the original.
	No additional restrictions — You may measures that legally restrict others fr	y not apply legal terms or <u>technological</u> om doing anything the license permits.
Notices	3:	
You do no	ot have to comply with the license for ele	ements of the material in the public
domain o	r where your use is permitted by an app	licable exception or limitation.
No warrai	nties are given. The license may not give	e you all of the permissions necessary for

may limit how you use the material.

Final Slides

Veronique Voisin Pathway and Network Analysis of –omics Data June 26-28, 2024

Cytoscape apps are organized by categories

WORKFLOW SUMMARY

ROADMAP

Fc gan	nn	na R-n	ne	diated p	hago	cyto	osis			
miRNAs	tł	nat are s	sigi	nificantly e	enrich	ed fo	r this path	way		
n this table miRNA	s are	depicted that haw	e signi	icantly more targets in	this pathway	than expect	ed by chance.		:	Search:
Excel CSV	Co	olumn visibility								
Database	1†	miRNA	J†	Evidence 1	Hits	11	Expected hits	P-value	11	Targets
miRBase		hsa-miR-126-3p		experimental (any)	7		0.281231	3.34e-8		AKT1,AKT2,ORK,ORKL,PIK3OG,PI
miRBase		hsa-miR-184		experimental (any)	5		0.297456	1.61e-4		AKT1,AKT2,INPPL1,PLPP3,PRKCE
miRCarta		m-5765		predicted (union)	56		36.0553	3.01e-4		AKT2,AMPH,ARPC2,ARPC3,ARPC
miRCarta		m-17942		predicted (intersection)	12		2.26763	3.86e-4		ARPC2, CRK, LAT, MAPK1, NCF1, PIF
miRCarta		m-152		predicted (union)	57		38.8709	4.14e-4		AKT2,AMPH,ARPC1B,ARPC2,ARF
miRCarta		m-12614		predicted (union)	55		36.7072	4.47e-4		AKT2,ARPC1B,ARPC2,ARPC4,AR
miRBase		hsa-miR-184		experimental (strong)	5		0.336283	4.48e-4		AKT1,AKT2,INPPL1,PLPP3,PRKC8
miRBase		hsa-miR-550a-3	р	experimental (strong)	2		0.0353982	6.66e-4		MAPK1,MAPK3
miDBaaa		bea mP 424 50		organization (union)	67		20,5222	7.070.4		AKTO AMON ADDOLD ADDOD ADD

Interaction networks

http://www.ccb.uni-saarland.de/mieaa_tool/

http://www.lirmed.com/tam2/

Re	sult					
Enrichment analysis results						
Text file of results Results Visualization						
Term 🔺	Count	Percent	Fold	P-value	Bonferroni	FDR
Gategory: Cluster (4 Items)						
hsa-mir-106b cluster [details]	1	0.33333	33.63889	0.0295	1	0.3755
hsa-mir-17 cluster [details]	2	0.33333	33.63889	1.32e-3	0.3569	0.08
hsa-mir-423 cluster [details]	1	0.5	50.45833	0.0197	1	0.3365
hsa-mir-6081 cluster [details]	1	0.2	20.18333	0.0487	1	0.479
Category: Disease (194 Items)						
Acute Cerebral Infarction [details]	1	0.16667	16.81944	0.0581	1	0.5292
Acute Ischemic Stroke [details]	2	0.14286	14.41667	7.67e-3	1	0.1858
Acute Myocardial Infarction [details]	2	0.04348	4.38768	0.0731	1	0.5944
Acute Pancreatitis [details]	1	0.14286	14.41667	0.0675	1	0.5676
Adenocarcinoma, Colon [details]	2	0.08696	8.77536	0.0203	1	0.2926
Adenocarcinoma, Esophageal [details]	1	0.04545	4.58712	0.1983	1	1
Adenocarcinoma, Gastric [details]	1	0.02632	2.6557	0.3191	1	1
Adenocarcinoma, Lung [details]	2	0.0198	1.99835	0.2642	1	1
Adrenal Cortex Neoplasms [details]	1	0.08333	8.40972	0.1131	1	0.7828

Metabolomics Data Analysis

A) list of metabolites from your experiment

B) pathway: a set of metabolites known to be involved in metabolic pathways

The colored compounds indicate potential matches from the user's input, with red colors indicating significant hits and blue colors indicating non-significant hits.

Pathway	Metabolites
Tryptophan metabolism	C00025; C00024; C00027; C00026; C00021; C00020; CE2119; C00028; C03722; C05647; C05645; CE1395; C05643; C05640; C00780; C05648; C00704; C01342; C00010; C00014; C00016; C00019; C15605; C00067; thbpt4acam; C05651; C03512; C05653; C02693; C05660; C00398; CE5982; C00643; C02220; C00078; C00978; C00877; C05642; CE5860; C01252; C05637; C02406; C00108; C00272; CE1918; C01652; C02470; C01144; C06212; C06213; CE2949; CE2948; CE3140; CE2122; C00479; CE2947; C01717; CE3092; CE6205; CE5899; C03161; C00268; C00632; CE2152; CE2153; C02700; CE2095; C00328; CE3087; CE3086; C00322; C04409; C01352; C00051; C00058; C00030; C00331; C00332; C00936; C03224; C05636; C05635; C05634; C05639; C05638; C10164; C00637; C03227; C01598; C00525; C00527; C00041; C03024; C00954

Starch and Sucrose Metabolism

33 15 5

14 <4 1 2 3 4 5 PF PT

0.13495

Metabolomics Data Analysis

Input Data Type Available Modules (click on a module to proceed, or scroll down for more details) Raw Spectra LC-MS Spectra (mzML, mzXML or mzData) Processing MS Peaks Functional Meta **Functional Analysis** (peak list or intensity table) analysis Annotated Features Joint-Pathway Enrichment Analysis Pathway Analysis **Network Analysis** (compound list or table) Analysis Generic Format (.csv or .txt table files)

Format Statistical Analysis xt table files) [one factor]		Statistical Analysis [metadata table]		is Bioma	rker Analysis	Statistical Met analysis	ta- Power /	Analysis	Other Utilities	
									New	
			14 44	1 2 3 4	5 P> P1				Trype	ł
Path	way Name	Total 0	Hits (all) 🗘	Hits (sig.) 0	Fisher's Pvalue 🗘	EASE Score 0	Gamma Pvalue 🗘	Match Details	Ascer	l
Tryptophan metabolism		94	64	21	0.0045504	0.0098086	0.0046682	View	Nitro	
Ascorbate (Vitamin C) ar	nd Aldarate Metabolism	29	18	9	0.0026117	0.010691	0.0046835	View	N-0b	2
Aminosugars metabolism	n	69	29	12	0.0038443	0.011655	0.0047003	View	Pyrim Vitar	
Nitrogen metabolism		6	4	4	0.0012414	0.022604	0.0048951	View	Sialic	
N-Glycan biosynthesis		48	14	7	0.0080322	0.032406	0.0050767	View	Alani	1
Pyrimidine metabolism		70	43	14	0.020992	0.045203	0.0053243	View	E Hexe	ļ
Vitamin B3 (nicotinate an	nd nicotinamide) metabolism	28	19	8	0.015895	0.049225	0.0054047	View	Argin	į
Sialic acid metabolism		107	28	10	0.025643	0.062907	0.0056878	View	Giya	į
Alanine and Aspartate M	letabolism	30	17	7	0.0272	0.08133	0.0060936	View	Methi	
Glutathione Metabolism		19	10	5	0.025367	0.099714	0.0065288	View	Paria	i
Hexose phosphorylation		20	18	7	0.037539	0.10359	0.0066246	View	Vitar	
Arginine and Proline Mel	tabolism	45	31	10	0.051168	0.10984	0.0067823	View	Giyee	2
Glycosphingolipid biosyr	nthesis - ganglioseries	62	11	5	0.039494	0.13447	0.0074426	View	Stard	į
Glutamate metabolism		15	11	5	0.039494	0.13447	0.0074426	View	Linok	
Methionine and cysteine	metabolism	94	46	13	0.075854	0.13715	0.0075184	View	Urea -	1
Purine metabolism		80	51	14	0.082458	0.1436	0.007704	View	Hits	
Parathio degradation		6	4	3	0.022858	0.16222	0.0082678	View	Am	2
Vitamin B9 (folate) metal	bolism	33	12	5	0.057555	0.17336	0.0086255	View	(40	ĺ
Glycosphingolipid biosyr	thesis - globoseries	16	8	4	0.045914	0.17647	0.0087285	View		

0.30626

0.014409

View

List of metabolites: Fishers' exact test If it is possible to rank all the metabolites: GSEA

Overall protocol for pathway-based GWAS / WGS analysis

GWAS -- > MAGENTA
(Meta-Analysis Geneset Enrichment of variaNT
Associations)
https://software.broadinstitute.org/mpg/magenta/

The only **input** required is a table with variant association p-values and their chromosome positions taken from a genome-wide association study or meta-analysis. **Optional:** pathway/s or gene set/s of interest. Otherwise, we provide a set of pathways from public databases (see below).

The main **output** of MAGENTA is a nominal **gene set enrichment analysis (GSEA)** *p*-value and a **false discovery rate** for each gene set or pathway tested. There are several options, including running MAGENTA in the absence of a subset of genes, such as a predefined set of disease or trait genes. Additional information is provided, such as the expected and observed number of genes above the enrichment cutoff, and the number and name of genes in each tested gene set that lie near validated disease or trait SNPs if inputed by the user.

Ref: https://pubmed.ncbi.nlm.nih.gov/30387919/

GWAS and pathway analysis

• BridGE: a pathway-based analysis tool for detecting genetic interactions from GWAS. Published: 21 March 2024. Nature Protocol

ATACseq / CHIPseq

GREAT (Standford) is a recommended tool (from chromosomal position • to gene + enrichment analysis)

bioinformatics.ca

All tools compatible with EnrichmentMap

, GREAT, Overview News Use GREAT Demo Video How to Cite Help Forum	
GREAT version 4.0.4 current (08/19/2019 to now)	
GREAT predicts functions of cis-regulatory regions.	Tips:
Many coding genes are well annotated with their biological functions. Non-coding regions typically lack such annotation. GREAT assigns biological meaning to a set of non-coding genomic regions by analyzing the annotations of the nearby genes. Thus, it is particularly useful in studying cis functions of sets of non-coding genomic regions. Cis-regulatory regions can be identified via both experimental methods (e.g. ChIP-seq) and by computational methods (e.g. comparative genomics). For more see our Nature Biotech Paper.	 Proximal analysis (+-2kb around TSS of genes
News	٨٠٠٠٩
 Aug. 19, 2019: GREAT version 4 adds support for human hg38 assembly and updates ontology datasets for all supported assemblies. Sep. 8, 2018: GREAT has served over 1 million job submissions. Oct. 23, 2017: GREAT is moved to a VM to eliminate proxy errors. June 22, 2017: GREAT hardware upgrade to meet increasing submission volume. Nov. 16, 2015: The GREAT user help forums are frozen. 	2) Distal analysis (+-50kb around genes, filter genomic regions using tools like Segway or BEHST)
 Feb. 15, 2015: GREAT version 3 switches to Ensembl genes, adds support for zebrafish danRer7 and mouse mm10 assemblies, and adds new ontologies. Apr. 3, 2012: GREAT version 2 adds new annotations to human and mouse ontologies and visualization tools for data exploration. 	
Feb. 18, 2012: The GREAT user help forums are opened.	
 May 2, 2010: GREAT version 1 is launched, concurrent to Nature Biotechnology publication (reprint, Faculty of 1000 "Must Read"). How to Cite GREAT? 	

More news items...

ATACseq / CHIPseq

Included in module 7: iRegulon

Transcriptomics: bulk RNA-seq 2 class design

- Module 2 and 3:
- GSEA
- Enrichment Map

Non model organisms

- 1. Find a pathway database/ gmt file which is the closest to your organism
- 2. Convert your gene identifier to the gene identifiers used in the gmt file that you found using g:Convert and g:Orth
- 3. Both GSEA and g:Profiler accept custom gmt file.
- 4. GeneMANIA offers several organisms and the option to build your interaction networks.

g:GOSt Functional profiling	g:Convert Gene ID conversion	g:Orth g:SNPense Orthology search SNP id to gene name	
Query Upload query Upload bed file Input is whitespace-separated list of genes @		Options Organism: 🚱	
		Homo sapiens (Human)	^
		Arabidopsis thaliana	
		Bos taurus (Cow)	
		Danio rerio (Zebrafish)	
		Drosophila melanogaster Gallus gallus (Chicken)	
		Homo sapiens (Human) Mus musculus (Mouse)	
Run query random example mixed quer	// y example	Oryza sativa Japonica Group Pyrenophora teres f. teres 0-1 (Pyrenophora teres)	
COSt performs functional enrichment analysis also		Rattus norvegicus (Rat) Saccharomyces cerevisiae	
abor performs renotional efficititient analysis, als	o known as over-representation		

Script to create a gmt file from the GO ontology: https://www.dropbox.com/s/wm3kq4lsdlfwcoq/creategmt.R?dl=0

Module 7 (Review of the tools)

- Work with your own data
- Integrated Assignment
- Q and A with instructors
- Automation (R coding for advanced users)
- clusterProfiler (R coding for advanced users)

Module 7 (optional)

- Chipseq and ATAC data: MEME and GREAT, EnrichmentMap
- iregulon: TF network

We are on a Coffee Break & Networking Session

