

Canadian Bioinformatics Workshops

www.bioinformatics.ca

bioinformaticsdotca.github.io

Attribution-ShareAlike 4.0 International

Canonical URL: https://creativecommons.org/licenses/by-sa/4.0/

See the legal code

You are free to:

 $\label{eq:Share-copy} \textbf{Share} - \textbf{copy} \ \text{and} \ \textbf{redistribute} \ \textbf{the material} \ \textbf{in any} \ \textbf{medium} \ \textbf{or} \ \textbf{format} \ \textbf{for any} \\ \textbf{purpose, even commercially}.$

 $\label{eq:Adapt-remix} \textbf{Adapt}-\text{remix}, \text{transform, and build upon the material for any purpose, even commercially.}$

The licensor cannot revoke these freedoms as long as you follow the license terms.

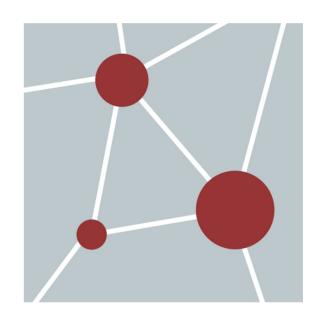
Under the following terms:

- **Attribution** You must give <u>appropriate credit</u>, provide a link to the license, and <u>indicate if changes were made</u>. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike If you remix, transform, or build upon the material, you must distribute your contributions under the <u>same license</u> as the original.

No additional restrictions — You may not apply legal terms or <u>technological</u>

measures that legally restrict others from doing anything the license permits.

Notices:

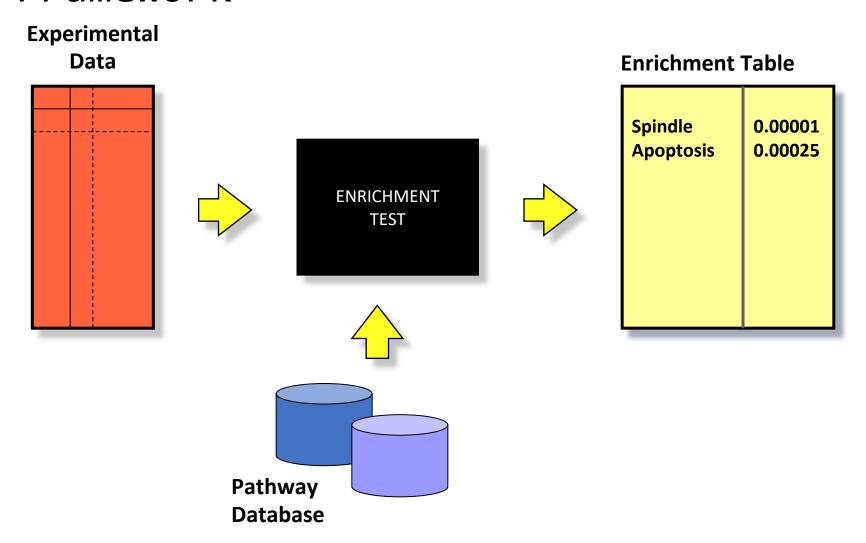

You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable <u>exception or limitation</u>.

No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as <u>publicity</u>, <u>privacy</u>, <u>or moral rights</u> may limit how you use the material.

Module 3: Enrichment Maps

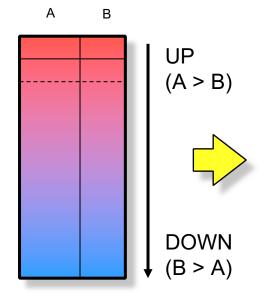
Ruth Isserlin Pathway and Network Analysis June 26-28, 2024

Learning Objectives

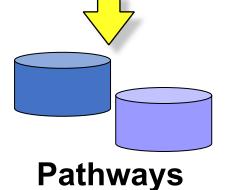

- By the end of this lecture, you will:
 - Understand how to transform your enrichment results from g:profiler, gsea or other enrichment algorithms to a Network
 - Understand the differences between a network and an Enrichment Map
 - Be able to summarize your enrichment results with annotation using the Autoannotate App.

Results of Lab 2 - Enrichment Results

GO.ID	Description	p.Val	FDR	Phenotype	Genes											
GO:0060255	regulation of macromolecule metabolic pro	oces 2.34E-30	2.34E-30	1	TP53,PTEN,	APC,VHL,KRA	S,ARID1A,EG	FR,NF1,PIK3	R1,CDKN	2A,GATA3,RB1,N	OTCH					
GO:0051171	regulation of nitrogen compound metabolic	c pro 6.44E-30	6.44E-30	1	TP53,PTEN,	APC,VHL,KRA	S,ARID1A,EG	FR,NF1,PIK3	R1,CDKN	2A,GATA3,RB1,N	ОТСН					
GO:0031323	regulation of cellular metabolic process	2.80E-29	2.80E-29	1	TP53,PIK3CA	A,PTEN,APC,V	HL,KRAS,ARI	ID1A,EGFR,N	NF1,PIK3R	1,CDKN2A,GATA	3,RB1					
GO:0019222	regulation of metabolic process	3.50E-29	3.50E-29	1	TP53,PIK3CA	A,PTEN,APC,V	HL,KRAS,ARI	ID1A,EGFR,N	NF1,PIK3R	1,CDKN2A,GATA	3,RB1					
GO:0080090	regulation of primary metabolic process	4.34E-29	4.34E-29	1	TP53,PTEN,	APC,VHL,KRA	S,ARID1A,EG	FR,NF1,PIK3	R1,CDKN	2A,GATA3,RB1,N	ОТСН					
GO:0051173	positive regulation of nitrogen compound n	neta 1.35E-28	1.35E-28	1	TP53,PTEN,	APC,VHL,KRA	S,ARID1A,EG	FR,PIK3R1,C	DKN2A,G	ATA3,RB1,NOTC	H1,FB					
GO:0010604	positive regulation of macromolecule meta	abol 1.51E-28	1.51E-28	1	TP53,PTEN,	APC,VHL,KRA	S,ARID1A,EG	FR,PIK3R1,C	DKN2A,G	ATA3,RB1,NOTC	H1,FB					
GO:1903506	regulation of nucleic acid-templated transc	ript 5.40E-27	5.40E-27	1	TP53,PTEN,	VHL,ARID1A,E	GFR,PIK3R1	,CDKN2A,GA	TA3,RB1	NOTCH1,FBXW7	,CTNN					
GO:2001141	regulation of RNA biosynthetic process	5.40E-27	5.40E-27	1	TP53,PTEN,	VHL,ARID1A,E	GFR,PIK3R1	,CDKN2A,GA	TA3,RB1	NOTCH1,FBXW7	,CTNN					
GO:0009893	positive regulation of metabolic process	IAME							GS <b< td=""><td>r> follo GS DETAIL</td><td>S SIZE</td><td>ES</td><td>NE</td><td>ES</td><td>NOM p-val</td><td>FDR q-val</td></b<>	r> follo GS DETAIL	S SIZE	ES	NE	ES	NOM p-val	FDR q-val
GO:0097659	nucleic acid-templated transcription H	ALLMARK_INTERFE	RON_GAMMA	A_RESPONSE%	MSIGDB_C2%	HALLMARK_IN	TERFERON_G	AMMA_RESPO	ONSE HALL	MARK_I Details	1	95 -0.812	175 -	3.1241286	. 0	. 0
GO:0032774	RNA biosynthetic process	ALLMARK_INTERFE	RON_ALPHA_	RESPONSE%M	SIGDB_C2%HA	ALLMARK_INTE	RFERON_ALP	HA_RESPONS	E HALL	MARK_I Details		-0.87	453	-2.969929	0	0
GO:0019219	regulation of nucleobase-containing com	RESPONSE TO INTER	RFERON-GAM	MA%GOBP%G	D:0034341				RESP	ONSE T Details	1	.0.741	603 -	2.8620038	0	0
GO:0031325	positive regulation of Centual Infetabolic 1	DEFENSE RESPONSE								NSE RE Details			_	2.8492434	0	0
GO:0006355	regulation of transcription. DNA-template	NTERFERON SIGNA								RFERON Details	1			2.7944484	0	0
	regulation of RNA metabolic process	ALLMARK_ALLOGR	_				REJECTION			MARK_/ Details		-0.731		-2.784118	0	0
	transcription DNA tomplated	ELLULAR RESPONS								JLAR REDetails		60 -0.861 81 -0.819		2.7440908 2.7424092	0	0
		NTERFERON GAMN ANTIGEN PROCESSII					EN VIA MHC C	1 ASS 1 TAD_D		RFERON Details				2.7424092	0	0
	regulation of cellular macromolecule bios							LA33 I, TAF-D		RFERON Details		64 -0.851		-2.702983	0	0
	-	YPE I INTERFERON					-			I INTER Details		0.861		2.6922164	0	0
	R	ESPONSE TO TYPE	INTERFERON	%GOBP%GO:0	034340				RESP	ONSE T Details		4 -0.851	7665 -	2.6604805	0	0
	A	NTIGEN PROCESSII	NG AND PRESE	NTATION OF E	XOGENOUS P	EPTIDE ANTIG	EN VIA MHC C	LASS I%GOBP	%GCANTI	GEN PR Details	1	77 -0.758	589 -	2.5932803	0	0
	E	R-PHAGOSOME PA	THWAY%REAC	TOME%R-HSA	-1236974.4				ER-PI	HAGOS(Details		-0.723	7594	-2.589577	0	0
	-	OSTIMULATION BY								IMULA1 Details				2.5822923	0	0
		ROTEASOME DEGR					SAPIENS			EASON Details		-0.742		2.5736508	0	0
		REGULATION OF LE								JLATION Details	1			-2.567436	0	0
		NTIGEN PROCESSI					LASS I%GOBP	%GO:000247		GEN PR Details		0.712		-2.560434	0	0
	A	NTIGEN RECEPTOR	-WEDIATED SI	GNALING PAT	1WAY%GOBP	%GO:0050851			ANTI	GEN RE Details	1	-0.693	- 604	2.5514965	0	0


- Over the years thousands of papers have been translated into digital representations as pathways or functional annotation.
- Enrichment analysis allows us to interpret data from these papers
- But Major cognitive burden relating overlapping information

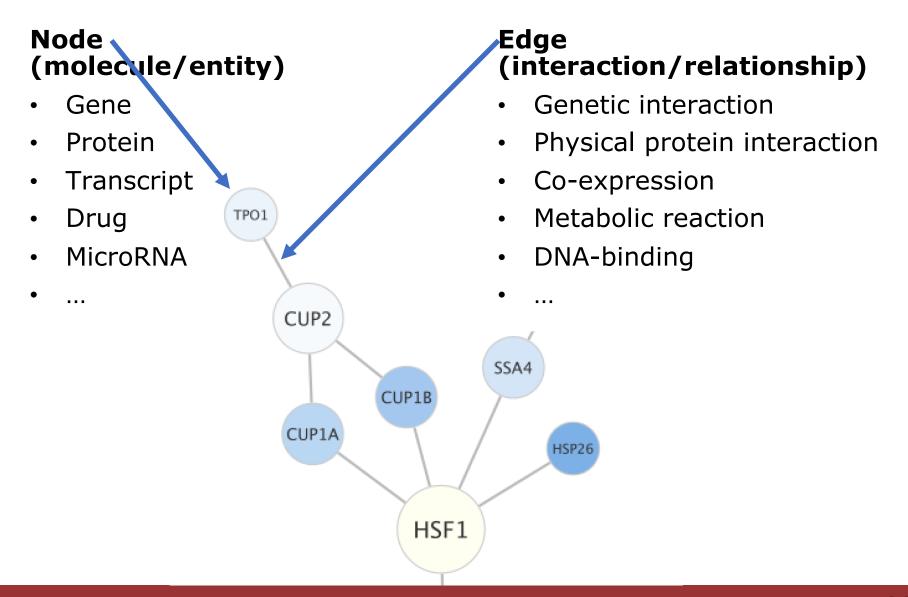
Pathway Enrichment Test: General Framework


Pathway Enrichment Analysis

Ranked Gene List

Thresholded lists (selected genes)

Enrichment in Condition A vs. B

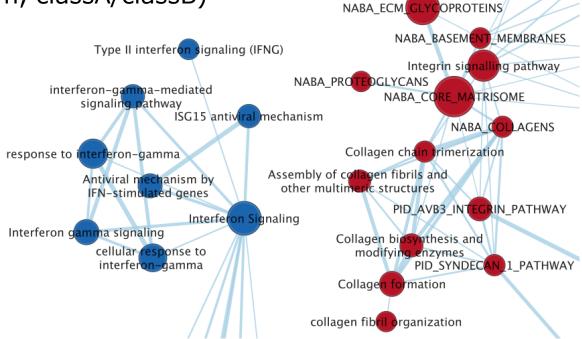

Gene-set	Significance
Cell Cycle EGF Pathway Spindle 	0.0001 0.003 0.007

Enrichment in Condition B vs. A

Gene-set	Significance
Proteasome Apoptosis Caspase 	0.0002 0.005 0.009

Merico D, Isserlin R, Stueker O, Emili A, Bader GD Enrichment map: a network-based method for gene-set enrichment visualization and interpretation PLoS One. 2010 Nov 15;5(11):e13984

Network Basics


Enrichment Map Basics

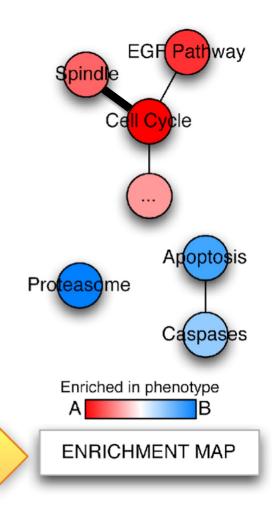
Node (molecule/entity)

- Pathway or geneset
- Size is correlated to number of genes in set
- Color indicates class in below example (for example Up/Down, classA/classB)

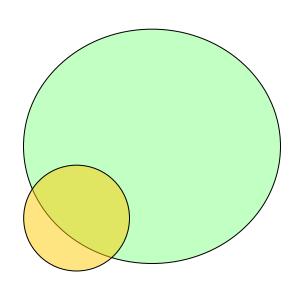
Edge (interaction/relationship)

- Degree of overlap between two genesets
- The more genes two pathways have in common the thicker/stronger the connection

Enrichment Map

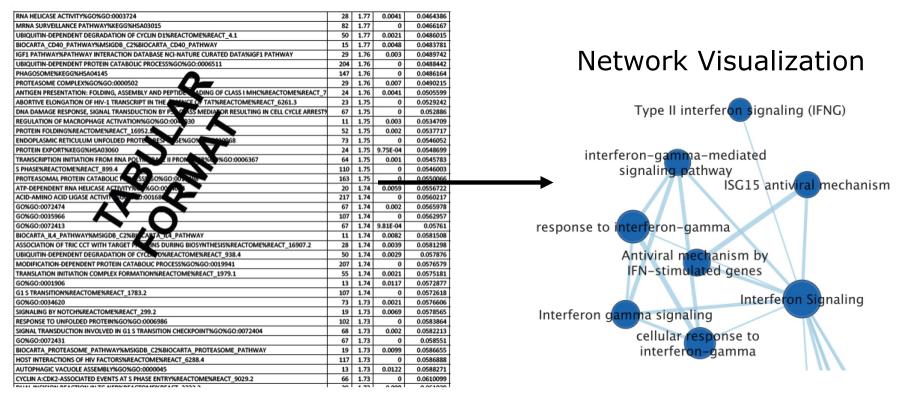

Enrichment in Condition A vs. B

Gene-set	Significance
Cell Cycle EGF Pathway Spindle 	0.0001 0.003 0.007


Enrichment in Condition B vs. A

Gene-set	Significance
Proteasome Apoptosis Caspase 	0.0002 0.005 0.009

GENE-SET LIST



Overlap

$$\frac{|A \cap B|}{\min(|A|,|B|)}$$

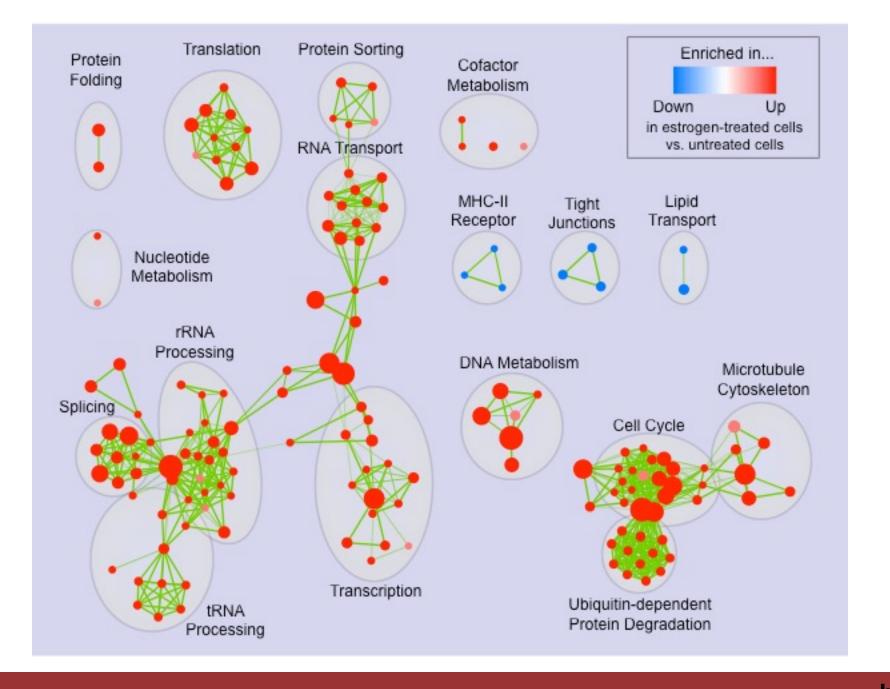
Typical Output

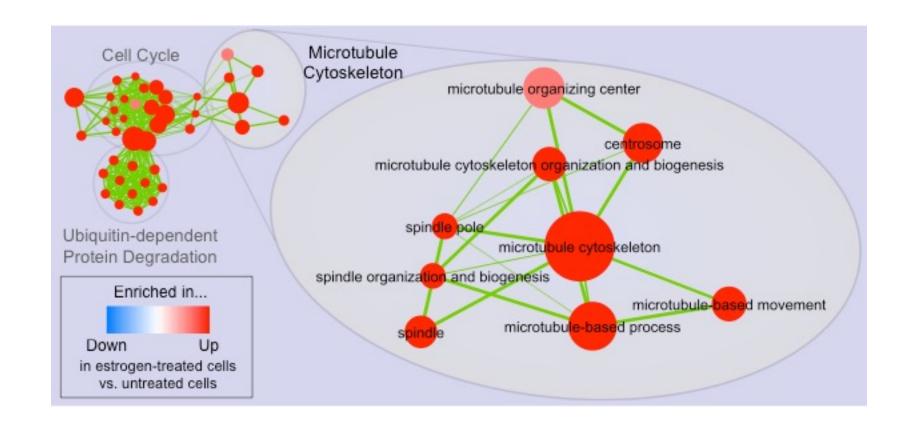
Each row is a gene-set (pathway). It displays:

- a score associated with the magnitude of overlap between gene-set and gene list.
- a pvalue that estimates the significance of the enrichment (by chance or not).
- a corrected pvalue (FDR) that corrects for multiple hypothesis testing.

Enrichment Map: use case I Single enrichment

Estrogen treatment of breast cancer cells


• <u>Design</u>:


2-time points, two-class

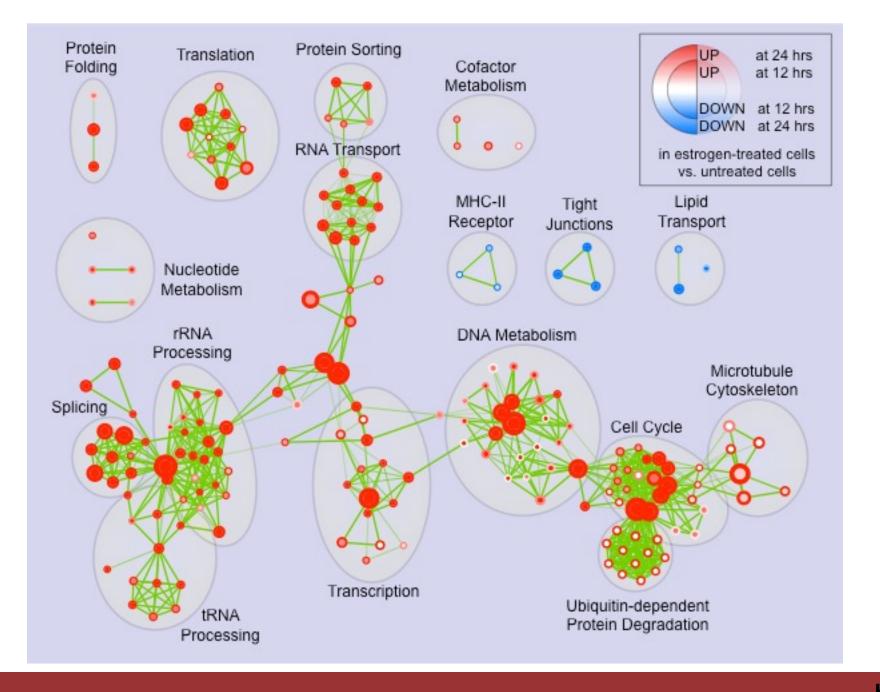
	12 hrs	24 hrs
Estrogen-treated	3	3
Untreated	3	3

Gene set Database:

Gene Ontology

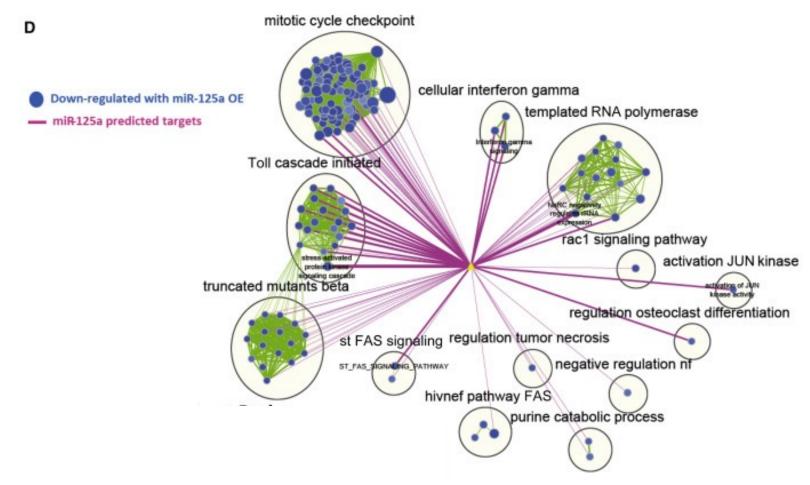
Enrichment Map: use case II Comparison of two enrichments

Estrogen treatment of breast cancer cells

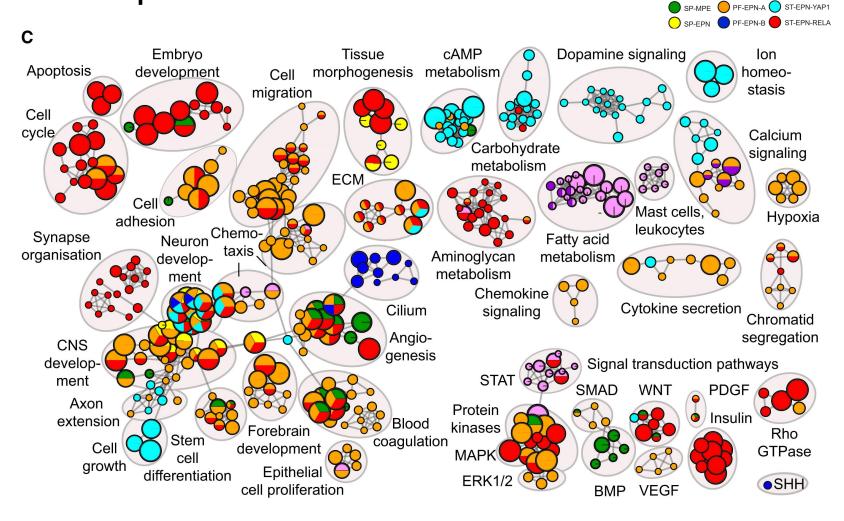

• <u>Design</u>:

2-time points, two-class

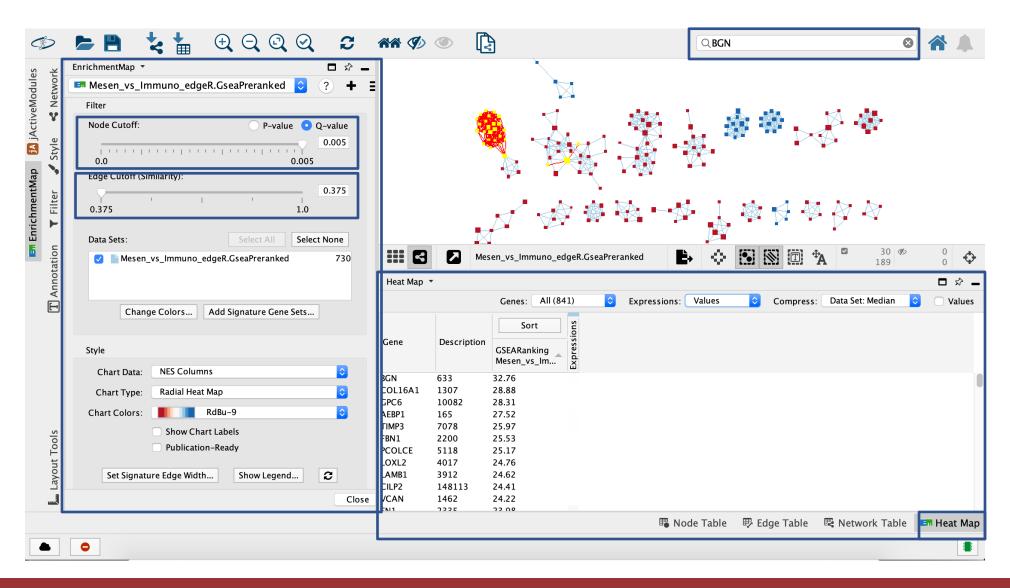
	12 hrs	24 hrs
Estrogen-treated	3	3
Untreated	3	3


Gene set Database:

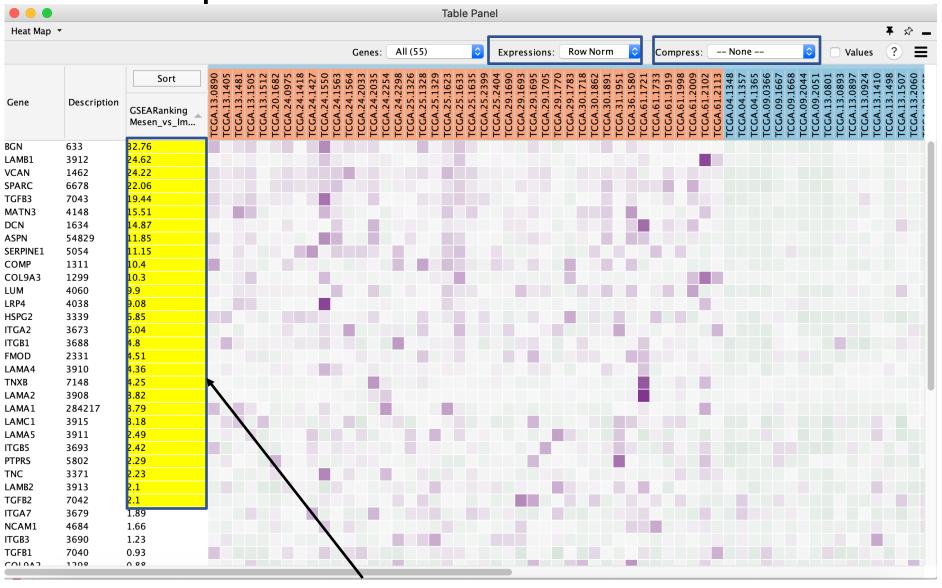
Gene Ontology



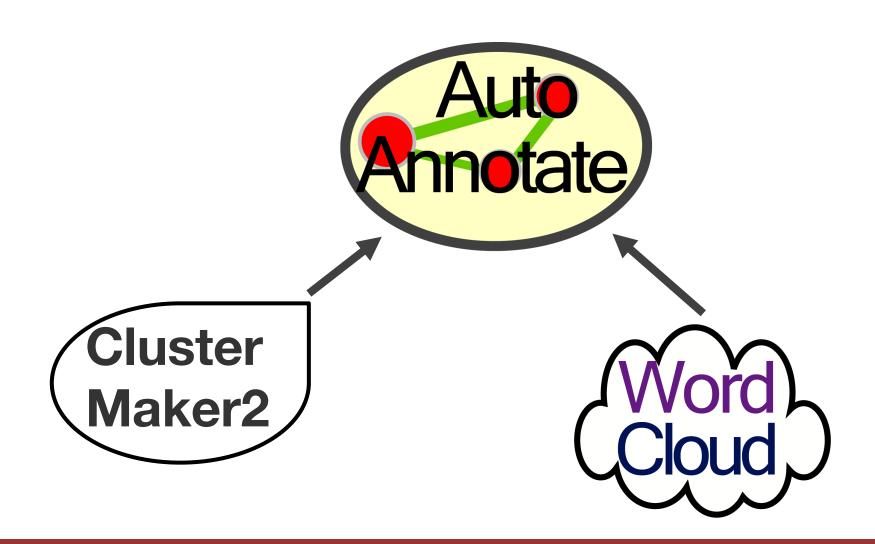
Enrichment Map: use case III Query Set Analysis


Wojtowicz EE, Lechman ER, Hermans KG, et al. Ectopic miR-125a Expression Induces Long-Term Repopulating Stem Cell Capacity in Mouse and Human Hematopoietic Progenitors. *Cell Stem Cell*. 2016;19(3):383-396

Enrichment Map: use case IV Multiple Datasets



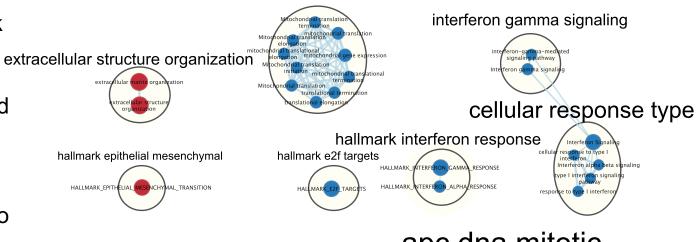
Pajtler KW, Witt H, Sill M, et al. Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. *Cancer Cell*. 2015;27(5):728-743

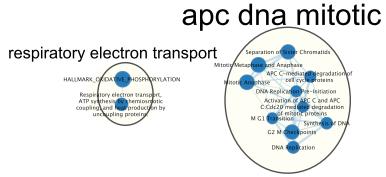

Enrichment Map Features

Heatmap Panel

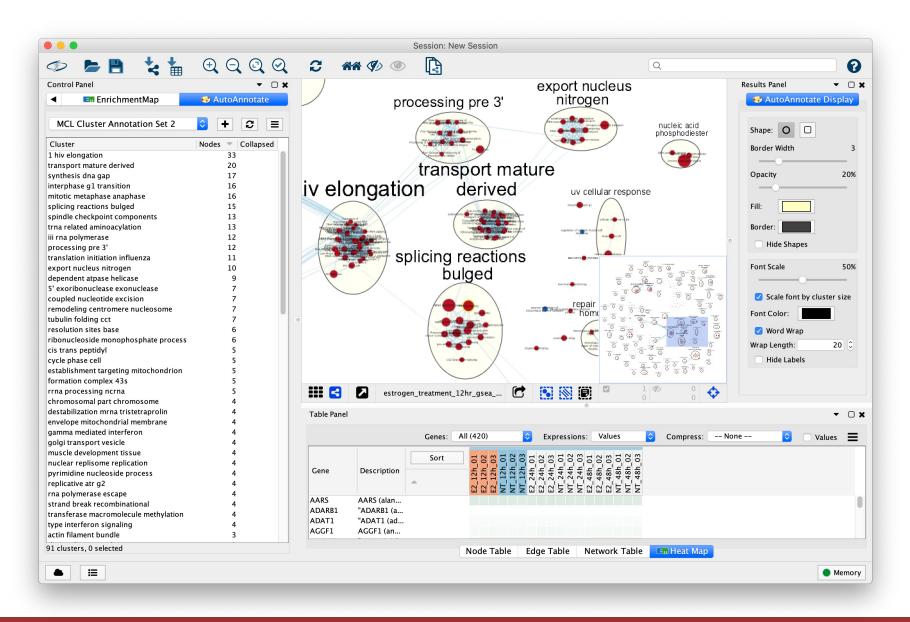
Enrichment Map Features

AutoAnnotate

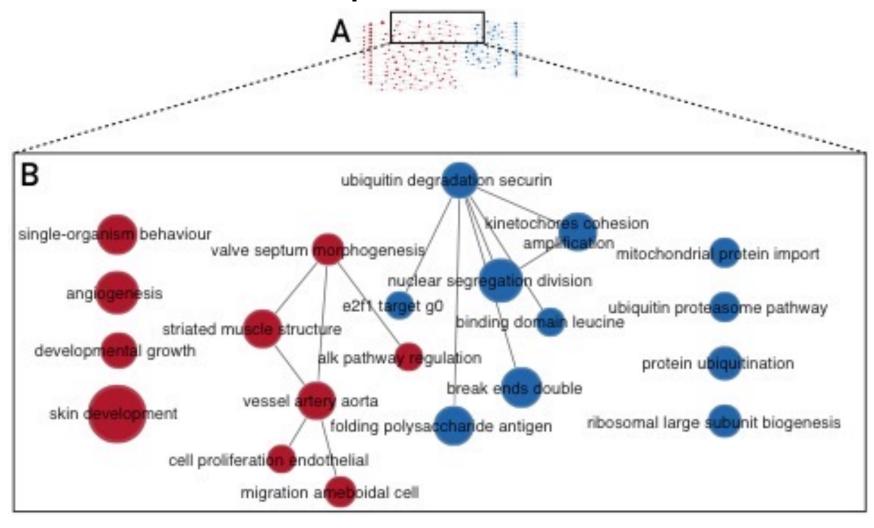

Steps:


mitochondrial translational translation

1. Cluster the. Network


2. For each cluster, find frequent words in node labels

- 3. Select top 3 words to create labels
- 4. Possibility to move or edit labels to make figure publication ready.



AutoAnnotate

Collapsed network

Practical Lab

- Experiment with Cytoscape
- Try out Enrichment Map
- Load your g:Profiler results and load the GSEA enrichment analysis files that you generated in Module 2 lab
- Try out all the different Enrichment Map features
- Try AutoAnnotate to annotate your networks.

We are on a Coffee Break & Networking Session

Workshop Sponsors:

