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Learning Objectives of Module

* Understand the principles of pathway and network
analysis.

— Sources of pathway and network data.

— Analytical approaches to data analysis, visualization and
integration.

— Applications of pathway enrichment analysis.




Why Pathway Analysis?

 Dramatic data size reduction: 1000’s of genes => dozens
of pathways.

* Increase statistical power by reducing multiple
hypotheses.

* Find meaning in the “long tail” of rare cancer mutations.

* Tell biological stories:
— ldentifying hidden patterns in gene lists.
— Creating mechanistic models to explain experimental observations.
— Predicting the function of unannotated genes.
— Establishing the framework for quantitative modeling.
— Assisting in the development of molecular signatures.



What is Pathway/Network Analysis?

* Any analytic technique that makes use of biological
pathway or molecular network information to gain
insights into a tumor or other biological system.

* A rapidly evolving field.

 Many approaches.




Ingredients you will Need

1. High-throughput biological data: A list of altered genes,
proteins, RNAs, etc.

2. A source of pathways or networks.




Pathways vs Networks
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Pathway Databases

* Advantages:
— Usually curated.
— Biochemical view of biological processes.
— Cause and effect captured.
— Human-interpretable visualizations.
* Disadvantages:
— Sparse coverage of genome.
— Different databases disagree on boundaries of pathways.



Reaction-Network Databases

e Reactome & KEGG

— explicitly describe biological processes as a series of
biochemical reactions.

— represents many events and states found in biology.
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KEGG

e Kyoto Encyclopedia of Genes and Genomes(KEGG):

— Avast library of information = fully sequenced genomes, genes,
proteins, pathways, and chemical compounds pertaining to

over a hundred different species of both prokaryotes and
eukaryotes.

— KEGG PATHWAY is a collection of manually drawn pathway
maps representing knowledge on the molecular interaction and
reaction networks for Metabolism, Cellular Processes,
Organismal Systems, Human Diseases and Drug Development

e Subscription required for access to underlying data for
analysis use.
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Reactome

 Open source and open access pathway database

e Curated human pathways encompassing metabolism,
signaling, and other biological processes.

e Rigorous curation standards — every pathway is traceable to
primary literature.

* Cross-reference to many other bioinformatics databases.

* Provides data visualization and analysis tools

— Google-map style reaction diagrams and textbook-style illustrations
with overlays;

— Find pathways containing your gene list;
— Calculate gene overrepresentation in pathways;
— Find corresponding pathways in other species.



Reactome Cell Cycle
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Networks

e Pathways capture only the “well understood” portion of
biology.

 Networks cover less well understood relationships:

— Genetic interactions

— Physical interaction

— Coexpression

— GO term sharing

— Adjacency in pathways
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Network Databases

e Can be built automatically or via curation.
 More extensive coverage of biological systems.
« Relationships and underlying evidence more tentative.

* Popular sources of curated networks:

— BioGRID — Curated physical and genetic interactions from
literature; 89K genes & 2.1M interactions from 80 species
(https://thebiogrid.org/)

— IntAct — Curated interactions from literature; 143K interactors
& 1.5M interactions from 9000 species.
(https://www.ebi.ac.uk/intact/home)

— GeneMANIA - Compendium of 2.8K gene association networks
representing 167K genes and 660M interactions from 9 species


https://www.ebi.ac.uk/intact/home
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Pathway/Network Analysis
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1) Enrichment of Fixed Gene Sets

e Coveredin Module 2.

* Most popular form of pathway/network analysis.
 Overrepresentation analysis vs functional class scoring.
Advantages:
e Easy to perform.
 Many good end-user tools.
 Statistical model well worked out.
 Disadvantages:
 Many possible gene sets;
 Gene sets are heavily overlapping;
* “Bags of genes” obscure regulatory relationships among them.



Reactome: Pathway Enrichment Analysis
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Reactome: Pathway Enrichment Analysis
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Reactome: Pathway Enrichment Analysis
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2) De Novo Subnetwork Construction &
Clustering

* Apply list of altered {genes,proteins,RNAs} to a biological
network.

* |dentify “topologically unlikely” configurations.

— E.g. a subset of the altered genes are closer to each other on
the network than you would expect by chance.

e Extract clusters of these unlikely configurations.
* Annotate the clusters.



Reactome Fl Network

e 12,441 Genes
e 291,172 Fls
* ~61% coverage of genome.

e False (+) rate < 1%
e False (-) rate ~80%

5% of network shown here



Reactome Fl Network
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A human functional protein interaction network and its application to cancer
data analysis, Wu et al. 2010 Genome Biology



http://genomebiology.com/content/11/5/R53
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http://genomebiology.com/content/11/5/R53

Popular Network Clustering Algorithms

GeneMANIA

— “Birds of a feather” principle.

— Very useful for finding genes that are related to an experimentally
defined set.

HotNet

— Finds “hot” clusters based on propagation of heat across metallic
lattice.

— Avoids ascertainment bias on unusually well-annotated genes.

HyperModules Cytoscape App

— Find network clusters that correlate with clinical characteristics.

 Reactome FI Network Cytoscape App

— Offers multiple clustering and correlation algorithms (including
HotNet, and survival correlation analysis)



3) Pathway-Based Modeling

Apply list of altered {genes,proteins,RNAs} to biological
pathways.

Preserve detailed biological relationships.

Attempt to integrate multiple molecular alterations
together to yield lists of altered pathway activities.

Pathway modeling shades into Systems Biology




Types of Pathway-Based Modeling

* Partial differential equations, e.g. CellINetAnalyzer
— Mostly suited for biochemical systems (metabolomics)

* Network flow models, e.g. NetPhorest
— Mostly suited for kinase cascades (phosphorylation info)

* Transcriptional regulatory network-based reconstruction
methods, e.g. ARACNe

e Logic Graphs and probabilistic graph models (PGMs)

— Capture the logic of a pathway without needing rate/binding
constants.

e Generative Al Models



Boolean Network Inference
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Generative Al Network Models

Large Language Models (GPT-3) are trained to
predict masked text:
The quick brown - Jumped over the lazy dog.

Generative pathway models are trained to predict
gene network perturbations:

) IS EUENe:




SCGPT - Trained on scRNAseq of 33M Cells

A o E UMAP of sampled normal human cells using scGPT emb.
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http://dx.doi.org/10.1038/s41592-024-02201-0

Can you use pathways to predict biology?

o 1o DATABASE

Author Instructions

The Journal of Biological Databases and Curation

Database (Oxford), 2022; 2022: baac009. PMCID: PMC9216552
Published online 2022 Mar 6. doi: 10.1093/database/baac009 PMID: 35348650

Evaluating the predictive accuracy of curated biological pathways in a public
knowledgebase

Adam J Wright,® Marija Orlic-Milacic,® Karen Rothfels, Joel Weiser, Quang M Trinh, Bijay Jassal, Robin A Haw, and

Lincoln D Stein®

» Author information » Article notes » Copyright and License information  Disclaimer

e How well can we predict the downstream effects of knocking
up/down a gene using:
O Experts gazing at pathway diagrams?
O A graph-based inference algorithm?



Step 1: Gather Input/Output Pairs

Root Input Iy S = /l\

Key Output

4,968 pairs
collected from 10
cancer-related
pathways




Step 2: Collect Empirical Results

e Literature searches for functional genomics experiments
in which key input was perturbed and effect on key
output measured.

531 papers found, reporting 847 tested cases.




Step 3: Predict Downstream Effects

1. Curators gaze at pathway
diagram and apply logic rules to
predict effect of perturbation.

2. Apply a boolean inference
algorithm, MP-BioPath, to
predict effect of perturbation.




Step 4: Compare Predictions to Empirical

85

6

Curator Predictive Accuracy: 81% 5 £
MP-BioPath Predictive Accuracy: 75% o . .
Random Guessing: 33% ;;W )

m

with 67

Largest source of error were false
. . . directed
negatives due to missing elements of the path

(711)
pathway. \

618

Largest source of false positives was

direction of perturbation predicted = \
incorrectly, also related to missing curator predictions MP-BioPath predictions
elements.

O] true positive (TP)
B true negative (TN)
[ false positive (FP)
[ false negative (FN)




Excellent Concordance between
Algorithm's & Humans' Predictions

ROC (Receiver Operating Characteristic)
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Conclusions & Takeaways

* Pathway analysis allows discovery of biological
processes hidden in large-scale data sets.

 Many databases and tools to choose from.

* Curated pathway databases now reaching levels of
completeness that allow for accurate prediction of
perturbations.

e Field is ripe for machine learning approaches.



Pathway/Network Database URLs

* BioGRID

— http:// www.thebiogrid.org
* |ntAct

— http://www.ebi.ac.uk/intact/
e KEGG

— http:// www.genome.jp/kegg

e Reactome
— http:// www.reactome.org



http://www.pathwaycommons.org/pc/
http://www.thebiogrid.org/
http://www.ebi.ac.uk/intact/
http://www.pathwaycommons.org/pc/
http://www.genome.jp/kegg
http://www.pathwaycommons.org/pc/
http://www.reactome.org/

De novo network construction &

clustering
* GeneMANIA
— http://www.genemania.org
* HotNet

— http://compbio.cs.brown.edu/projects/hotnet/

 HyperModules
— http://apps.cytoscape.org/apps/hypermodules

* Reactome Cytoscape FIViz App
— http://apps.cytoscape.org/apps/reactomefis



http://www.genemania.org/
http://compbio.cs.brown.edu/projects/hotnet/
http://apps.cytoscape.org/apps/hypermodules
http://apps.cytoscape.org/apps/reactomefis

Pathway Modeling

* CellNetAnalyzer

— http://www.ebi.ac.uk/research/saez-rodriguez/software

 NetPhorest/NetworKIN
— http://netphorest.info, http://networkin.info

* ARACNe

— http://wiki.c2b2.columbia.edu/califanolab/index.php/Software
/ARACNE

e scGPT
— https://github.com/bowang-lab/scGPT

* Pathway Prediction Evaluation Paper
e https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9216552/



http://www.ebi.ac.uk/research/saez-rodriguez/software
http://netphorest.info/
http://networkin.info/
http://wiki.c2b2.columbia.edu/califanolab/index.php/Software/ARACNE
http://wiki.c2b2.columbia.edu/califanolab/index.php/Software/ARACNE
https://github.com/bowang-lab/scGPT
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9216552/

We are on a Coffee Break &
Networking Session




