

1

Semi-automated genome annotation

using epigenomic data and Segway

Eric G. Roberts1, Mickaël Mendez1,2, Coby Viner1,2, Mehran Karimzadeh1,3, Rachel C.W.

Chan1,2, Rachel Ancar4, Davide Chicco1, Jay R. Hesselberth4, Anshul Kundaje5,6, Michael M.

Hoffman1,2,3,7

1 Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada;

2 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada;

3 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada;

4 Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora,

Colorado, USA. 5 Department of Computer Science, Stanford University, Stanford, California,

USA; 6 Department of Genetics, Stanford University, Stanford, California, USA. 7 Vector Institute

for Artificial Intelligence; Correspondence should be addressed to M.M.H.

(michael.hoffman@utoronto.ca).

Keywords

Annotation, Chromatin, Chromatin analysis, Epigenomics, Software, Gene regulation, Dynamic

Bayesian network

mailto:michael.hoffman@utoronto.ca

2

Authors

Hoffman Lab

Website: hoffmanlab.org

Address:

Toronto Medical Discovery Tower 11-401

101 College Street

Toronto, ON M5G 1L7

Canada

Telephone: +1 416 634 8736

Eric G. Roberts, eroberts@uhnresearch.ca

Mickaël Mendez, mendez.mickael@gmail.com

Coby Viner, cviner@cs.toronto.edu

Mehran Karimzadeh, mehran.karimzade@gmail.com

Rachel Chan, rachelchan@cs.toronto.edu

Davide Chicco, davide.chicco@gmail.com

Michael M. Hoffman

Address:

http://hoffmanlab.org/
mailto:eroberts@uhnresearch.ca
mailto:mendez.mickael@gmail.com
mailto:mendez.mickael@gmail.com
mailto:cviner@cs.toronto.edu
mailto:cviner@cs.toronto.edu
mailto:cviner@cs.toronto.edu
mailto:mehran.karimzade@gmail.com
mailto:davide.chicco@gmail.com

3

Toronto Medical Discovery Tower 11-311

101 College Street

Toronto, ON M5G 1L7

Canada

michael.hoffman@utoronto.ca

Telephone: +1 416 581 8789

Hesselberth Lab

Website: hesselberthlab.github.io

Address:

University of Colorado School of Medicine

12801 E 17TH Ave

RC1 South 10104

Aurora CO 80045

USA

Telephone: +1 303 724 5486

Rachel Ancar, rachel.ancar@ucdenver.edu

Jay R. Hesselberth

jay.hesselberth@gmail.com

mailto:michael.hoffman@utoronto.ca
http://hesselberthlab.github.io/
mailto:rachel.ancar@ucdenver.edu
mailto:jay.hesselberth@gmail.com

4

Telephone: +1 303 724 5384

Kundaje Lab

Website: sites.google.com/site/anshulkundaje

Anshul Kundaje

Address:

Department of Genetics

300 Pasteur Dr, Lane Building, L301

Stanford, CA 94305-5120

USA

akundaje@stanford.edu

Telephone: +1 650 723 2353

Biochemical techniques measure many individual properties of chromatin along the

genome. These properties include DNA accessibility (measured by DNase-seq) and the

presence of individual transcription factors and histone modifications (measured by

ChIP-seq). Segway is software that transforms multiple datasets on chromatin properties

into a single annotation of the genome that a biologist can more easily interpret. This

protocol describes how to use Segway to annotate the genome, starting with reads from

https://sites.google.com/site/anshulkundaje/
mailto:akundaje@stanford.edu

5

a ChIP-seq experiment. It includes pre-processing of data, training the Segway model,

annotating the genome, assigning biological meanings to labels, and visualizing the

annotation in a genome browser. Segway is unique in its use of a modifiable Dynamic

Bayesian Network which allows it to handle missing data, model length constraints for

annotated regions, supervise regions, and uses custom graphical models for specific

project needs. Additionally, Segway defaults to a single base-pair analysis on the

genome to precisely predict the underlying data distribution and the resulting

annotation. This protocol takes less than 8 hours including data preparation,

computation, analysis and visualization.

INTRODUCTION

Segway1,2 is software that discovers patterns in genomic signal datasets, and then transforms

multiple datasets into a simple annotation, labeling the best pattern at every position in the

genome. Each input data set comes from a biochemical technique that measures some property

along the genome. Often the property relates to local chromatin biology, such as DNA

accessibility (measured by DNase-seq3,4 or ATAC-seq5) and the presence of individual

transcription factors and histone modifications (measured by ChIP-seq6). The input data could,

however, include any property quantified along the genome in a locus-specific manner. Given

some genome-aligned datasets, Segway constructs a statistical model of recurring patterns

across these datasets. In the model, every base has a hidden label that determines which

pattern is generated at that position. Then, Segway uses that model to annotate the whole

genome automatically with the best label for every position. Finally, supporting tools visualize

and summarize the model and annotation to reveal how these patterns associate with known

and novel biological phenomena.

6

Motivation

Researchers often have multiple functional genomic datasets that they wish to understand.

While analysts have a rich choice of peak-calling methods7–9, post hoc comparisons of peak

calls are unwieldy, at best. At worst, they have decreased power to detect phenomena

associated with low signal in a single dataset that are revealed as significant when we jointly

consider multiple datasets. To discover more potentially significant regions, one needs a

method of integrative analysis across multiple datasets.

To perform integrative analysis on unprecedented quantities of genomic signal data,

researchers in the ENCODE Pilot Project10 developed the first semi-automated genome

annotation method, HMMSeg11,12. Semi-automated genome annotation jointly analyzes multiple

datasets in an unsupervised fashion, allowing the discovery of both known and novel patterns. It

usually works by creating a segmentation, which is an annotation that has one label at every

position. Since the ENCODE Pilot, multiple semi-automated genome annotation methods have

been developed13–18, including HMMSeg’s successor, Segway. Segway is one of the most

powerful methods for semi-automated genome annotation methods, capable of analyzing

multiple datasets at 1–base-pair resolution, handling heterogeneous patterns of missing data,

and modeling signal level directly rather than binarizing.

Signal data usually comes from sequencing assays with a technical resolution of 1 bp, but

positional stochasticity introduced in the standard ChIP-seq process means a slightly lower

effective resolution. Thus, we recommend using 10 bp in this protocol. Techniques like ChIP-

exo19 and ChIP-nexus20, however, can deliver effective resolutions of up to 1 bp. Additionally,

open chromatin assays like DNase (cite both Crawford and Stam method papers) or ATAC-seq

7

(cite Greenleaf paper) can reflect footprints at 1 bp resolution, and other work shows Segway’s

use to identify these footprints21.

Various combinations of multiple functional genomic datasets have been used to model specific

genomic features. The Segway method was used to build a model for predicting transcript start

sites using a mixture of gaussians and virtual evidence. For transcription start sites, input

datasets of FANTOM5 CAGE, various histone marks, and DNase were selected (cite

https://www.biorxiv.org/content/10.1101/2020.01.30.926923v1.full.pdf+html). SegRNA (cite

https://www.biorxiv.org/content/10.1101/2020.07.28.225193v1.full.pdf+html), was developed

using Segway to characterizing patterns of a cell type’s transcriptome using stranded aware

model using the available concatenation option. For this model PRO-seq, RNA-seq, and CAGE

datasets were integrated. When attempting to model patterns of genomic datasets, the

interpretation and quality of the resulting model depends on the data selection, it’s quality, and

your model parameters.

Comparison of Segway to similar methods

Segway in unique in its use of a Dynamic Bayesian Network. This model allows for more

nuanced tuning of genomic state parameters. The Segway model can transparently predict over

missing data, have minimum and maximum length state lengths, specify a fixed length on which

state transitions must occur, have states supervised for a given label, and amongst other

various features have any other graphical model feature a sufficiently advanced user may

supply themselves. Segway was found to have similar performance for equivalent data

resolutions with other genome annotation software22 such as ChromHMM13. Additionally, there

https://www.biorxiv.org/content/10.1101/2020.01.30.926923v1.full.pdf+html
https://www.biorxiv.org/content/10.1101/2020.07.28.225193v1.full.pdf+html

8

have been various comparisons between the Segway model22 and other genome annotation

software23 that have certain computational24 or domain specialties (cite hierarchical annotation

software?).

Limitations of Segway

To use experimental data with Segway efficiently it must be in a Genomedata file format.

Segway cannot work directly with aligned reads. It is highly recommended to process

experimental data into a signal enrichment format. For a given genome annotation project, the

exact parameters needed require basic experience with machine learning techniques and the

type of analysis. For example, Segway cannot guess the best number of genomic labels for a

given set of data. In the resulting annotation, Segway does not assign biological meaning to the

resulting labels. Segway instead relies on other tools, such as Segtools, to help analyze the

resulting learned parameters on labels and enrichment analysis for each label on existing

reference datasets. These tools allow an experienced biologist to assign biological meaning to

each label. For annotations of gene regulation this process has been fully automated25.

Experimental design

In this protocol, we focus on how to use Segway to create a simple regulatory annotation for a

given cell type by selecting datasets from histone marks and transcription factors. This protocol

also provides simple data interpretation for the resulting annotation resulting in visualizations,

gene enrichment, and a list of gene IDs given a gene annotation source. For a regulatory

annotation, these steps are considered suggestions and the specific analysis will depend on the

outcome needed for the experimenter and for modeling different sets of genomic features. The

process has the following major steps (Figure 1):

9

1. Create bedGraph26 signal from aligned reads from ChIP-seq data or download signal

data from an existing project.

2. Create Genomedata27 archives containing the signal data.

3. Train the Segway model.

4. Use Segway to produce an annotation in browser-extensible data (BED) format28.

5. View and analyze the resulting annotation.

In the PROCEDURE section we illustrate how to perform these steps both for any set of data

and specifically on five ChIP-seq experiments for a human B-cell lymphoma cell line, DOHH229.

One can apply Segway to any number of signal datasets but we recommend using at least two.

Obviously, Segway cannot find combinatorial patterns in single datasets, and purpose-made

tools such as peak callers perform better at this task. Data from open chromatin assays such as

DNase-seq or ATAC-seq proves particularly informative in Segway analyses, and one can often

generate in the laboratory more easily. For simplicity we focus on ChIP-seq datasets here. It is

important to ensure that any ChIP-seq data used is of sufficient quality. Suggestions on

assessing the quality of these datasets is provided in Box 4 | Quality control for ChIP-seq data.

The set of ChIP-seq targets we use here—H3K4me1, H3K4me3, H3K27ac, H3K27me3, and

CTCF—prove sufficient to identify the most interesting recurring patterns and provide a useful

baseline for epigenomic regulatory characterization. If we only had the resources for two ChIP-

seq targets, H3K27ac (an “activating” mark) and H3K27me3 (a “repressive” mark) seem most

useful. The other three datasets provide the means for identifying particular kinds of epigenomic

patterns such as insulators (CTCF) or distinguishing between promoters (H3K4me3) and

enhancers (H3K4me1). With more resources, one might discover a greater diversity of patterns

adding in H3K36me3 (often found at transcribed gene bodies), or H3K9me3 (constitutive

heterochromatin). With this protocol, adding ChIP-seq data for other transcription factors is

10

unlikely to contribute much to results, although an annotation trained only with transcription

factor data might prove interesting.

The ChIP-seq targets for this protocol are filtered by a multi-read mappability score. The Umap30

project provides lists of uniquely mappable regions for various assemblies and different genomic

dataset read lengths. The files from the datasets contain a mappability score which is the

probability that a randomly selected read of a fixed length in a given region is uniquely

mappable. Smaller scores indicate less confidence about the observed ChIP-seq signal and are

removed from the analysis.

In order to efficiently store and improve speed of analysis, the datasets for these targets are

stored in a Genomedata31 archive. These archives are designed for dense genomic signal data

and allow for efficient random access. Genomedata archives also provide information on where

data is effectively present using a reference sequence or as used in this protocol, contig (cite?)

locations using AGP (cite) files. In order to map chromosome identifiers used by NCBI for use in

visualization in the UCSC Genome Brower, an assembly report (cite?) provided by NCBI is used

for translational purposes.

To further reduce noise and unnecessary computation we can remove problematic regions from

the hg38 reference genome. A blacklist by ENCODE and a list of hard-masked cognates and

pseudoautosomal regions provided by the Genome Reference Consortium (cite) are excluded

from model training and from the resulting annotation. Functional genomic experiments often

produce artifact signal in certain regions of the genome. If there is a curated list of these

blacklisted regions for the genome and assembly you are using in your annotation, we

11

recommend excluding these regions from your analysis. Additionally, the masked regions have

unmasked exact sequence duplicates elsewhere in the genome. Data will not align to the

masked regions and may be removed from the analysis. For more details regarding the masked

regions, a document is available online

(http://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.28_GRCh38.p13/G

RCh38_major_release_seqs_for_alignment_pipelines/README_analysis_sets.txt).

The training process automatically discovers recurring patterns in the signal data you supplied.

Training relies on an expectation-maximization38 (EM) process that seeks a local maximum

likelihood. The likelihood is the probability of generating the given data from the model and its

learned parameters. Segway can optimize from multiple sets of initial values simultaneously.

Each simultaneous training instance results in locally optimized parameters and Segway picks

the winner with the best likelihood.

For increased computational speed, we can train on only a fraction of the genome. For this

experiment, the minibatch feature is employed specifying which fraction of your data you wish to

use. The minibatch feature uses a different randomly selected part of the genome in each

training round. In Segway we set the number of training rounds with the --max-train-rounds.

In most cases, the patterns found after five rounds are quite similar to those after 100. To

increase the speed of this experiment, we will set the maximum number of rounds to 10. Here,

we can also speed up training by reducing the resolution of the signal data with the --

resolution option and it is increased from a default resolution of 1 base pair to 10.

http://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.28_GRCh38.p13/GRCh38_major_release_seqs_for_alignment_pipelines/README_analysis_sets.txt
http://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.28_GRCh38.p13/GRCh38_major_release_seqs_for_alignment_pipelines/README_analysis_sets.txt

12

To aid the experimenter in understanding their segmentation results, Segtools39

(segtools.hoffmanlab.org) is a collection of command-line tools that enables exploratory data

analysis of genome segmentations, such as the output of Segway. Each tool provides distinct

information such as the distribution of segment lengths. Existing standard annotations of gene

elements such as those provided by GENCODE can be used to calculate enrichment for a given

labels and give us a list of gene IDs for labels of interest. Combining Segtools plots and analysis

enables you to assign a biological meaning to each annotation label.

To visualize genomic regions of interest, The UCSC Genome Browser can load signal tracks

and segmentations. To visualize all used and created datasets, a track hub41 is created —a

collection of genome annotation files on a web server. This allows for example to visualize,

compare and functionally annotate Segway annotations (Box 6).

Existing Segway annotations

Segway has already produced a number of useful segmentations that are freely available for

downloading or viewing in a genome browser. Several of these are available from the Segway

website (segway.hoffmanlab.org). The Ensembl Regulatory Build32 has Segway annotations of

chromatin state across 74 cell types. You can view the Regulatory build segmentations both in

Ensembl33 and in the UCSC Genome Browser34.

http://segtools.hoffmanlab.org/
http://segway.hoffmanlab.org/

13

Adapting Segway to other tasks

While most published examples of Segway’s use involve semi-automated genome annotation of

chromatin state, it is highly adaptable. One can perform semi-automated genome annotation on

any kind of genomic signal data. Since you can also supply an arbitrary Graphical Model

Toolkit35 (GMTK) dynamic Bayesian network (DBN) model, you can also use Segway as a

framework for various different inferences on genomic signal data36.

Primary audience

This protocol was designed for bioinformaticians and other biologists who wish to produce

genomic annotations automatically. The signal data can come from public resources, such as

ENCODE, or from your own experiments. You should have Linux experience.

MATERIALS

EQUIPMENT AND SOFTWARE

● Linux server or workstation

● At least 15 GB of free disk space

● At least 6 GB of memory

● Internet connection

● A Bash shell

● (Recommended) Debian 8, Red Hat Enterprise Linux 7, or CentOS 7

14

● (Recommended) Cluster system running Grid Engine, SLURM, IBM Platform Load

Sharing Facility (LSF), Portable Batch System (PBS), or Torque

Required data

● ChIP-seq read alignments in Binary Alignment/Map (BAM) format (Box 2) or ChIP-seq

sequence data tracks from a public source such as ENCODE (Box 3).

PROCEDURE

Load signal into Genomedata archives • Timing < 2.5 h

1| Install the prerequisite software in Box 1.

2| Download assembly golden path files for your genome. To download the human genome

assembly version GRCh38/hg38, execute:

wget --recursive --no-directories --no-parent --accept '*chr*.agp.gz' --reject
'*comp.agp.gz'
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.28_GRCh38.p13/
GCA_000001405.28_GRCh38.p13_assembly_structure/Primary_Assembly/assembled_chromosom
es/AGP/

⚠ Critical Step

The genome assembly version used to align all your signal data must match each other and

the assembly chosen in this step. Always check that assembly versions match and never

assume. Failing to ensure consistency will yield nonsensical results from Segway, or any

15

other genome analysis software. There is no guarantee that Genomedata will warn of data in

unexpected positions.

3| Download DOHH2 cell line signal data tracks CTCF, H3K4me1, H3K4me3, H3K27ac,

H3K27me3 as outlined in Box 3 or generate the signal files from raw reads as outlined in Box

2.

4| Download the list of uniquely mappable regions from the Umap project for your genome

and corresponding to the closest read length of your data, (use the smaller read length in case

of ties). For the DOHH2 cell line signal data from ENCODE with read smallest read length of 36

base pairs, execute:

wget https://bismap.hoffmanlab.org/raw/hg38/k36.umap.bedgraph.gz

5|

Filter the Umap file for uniquely mappable regions with a multi-read mappability score greater or

equal to 0.75. Execute:

zcat k36.umap.bedgraph.gz | awk 'BEGIN {FS=OFS="\t"} {if ($4 >= .75) print $1, $2,

$3}' | bedtools merge > k36_umap_multiread_filtered.bed

16

⚠ Critical Step

Signal files downloaded from ENCODE (from Box 1), or generated from Box 2 do not

distinguish true zero-valued regions from unmappable regions. MACS28 does not distinguish

true zero-values from missing data in its output. Segway attempts to accurately and

separately model missing data versus zero-valued data. Ideally, your signal files should

contain missing data when data is actually missing (by omitting the data) and zero-valued

data when there is a known zero value result. If it is impossible to distinguish between zero-

valued data and missing data, we recommend setting all missing data to zero. Avoid removing

zero-valued data, if possible.

6| Download the GRCh38 assembly report. Execute:

wget
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.28_GRCh38.p13/GC
A_000001405.28_GRCh38.p13_assembly_report.txt

7| Create Genomedata archives containing your reference assembly and signal tracks.

Specifically, create an individual archive for each individual signal track. To create a

Genomedata archive with the GRCh38 human assembly from NCBI the signal files from Step 3,

execute:

genomedata-load --assembly --sequence 'chr*.agp.gz' –track
H3K4me1=ENCFF509XSM_DOHH2_H3K4me1.bigWig --maskfile k36_umap_multiread_filtered.bed
ENCFF509XSM_DOHH2_H3K4me1.genomedata

This will result in a file called ENCFF509XSM_DOHH2_H3K4me1.genomedata containing signal

from ENCFF509XSM.bigWig masked by regions contained in

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.28_GRCh38.p13/GCA_000001405.28_GRCh38.p13_assembly_report.txt
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.28_GRCh38.p13/GCA_000001405.28_GRCh38.p13_assembly_report.txt

17

k36.umap_multiread_filtered.bed and assembly data from the given AGP files. The --

track option from the previous command allows one to assign a name to a track for a given

signal file. In this case, it assigns the track name of H3K4me1 to the signal data found in

ENCFF509XSM.bigWig. If possible, it is recommended that you create your archives

simultaneously.

8| Create unique named Genomedata archives for the remaining signal files by repeating

Step 7 for each remaining signal file gathered in Step 3. If you do this with the suggested

datasets, you will have five new Genomedata directories containing the signal data

(ENCFF509XSM_DOHH2_H3K4me1.genomedata, ENCFF745GML_DOHH2_H3K4me3.genomedata,

ENCFF592CSV_DOHH2_H3K27me3.genomedata, ENCFF890NAY_DOHH2_H3K27ac.genomedata,

and ENCFF884IIL_DOHH2_CTCF.genomedata).

Train Segway model from data • Timing < 30 min

9| (Optional) Set a random seed. Segway optimizes model parameters from randomly

selected initial values. Usually it is better to let this random selection work unconstrained, but to

reproduce the ANTICIPATED RESULTS here exactly, you must ensure the same sequence of

random numbers. Do this by setting the SEGWAY_RAND_SEED to a positive (32 bit) integer. For

example, to replicate ANTICIPATED RESULTS, execute:

export SEGWAY_RAND_SEED=22426492

? TROUBLESHOOTING

18

10| (Optional) Store the number of effective cores on your machine. This number is the

product of the number of processors and each processor’s number of Central Processing Unit

(CPU) cores (Figure 2).

Export an environment variable containing the maximum available number of cores to use for

other aspects of the protocol, execute:

export NUM_THREADS=$(getconf _NPROCESSORS_ONLN)

11| (Optional) Limit Segway’s processor usage. To do this, set the

SEGWAY_NUM_LOCAL_JOBS environment variable to the maximum number of processes you wish

Segway to use. Smaller values for SEGWAY_NUM_LOCAL_JOBS will result in slower running times

and therefore the protocol will take longer to perform. This step only applies to users who run

Segway without a cluster environment such as Grid Engine37, and we recommend using such

an environment if possible (Box 5).

On a cluster, use instead the number of slots allocated to your job. Set

SEGWAY_NUM_LOCAL_JOBS using the value from Step 10 by executing:

export SEGWAY_NUM_LOCAL_JOBS="$NUM_THREADS"

19

12| (Recommended, Optional) Download a list of masked regions from the Genome

Reference Consortium (https://www.ncbi.nlm.nih.gov/grc) to exclude from the analysis. To

download the masked regions into a 0-based BED file format, execute:

wget –q –O -

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.28_GRCh38.p13/

GRCh38_major_release_seqs_for_alignment_pipelines/unmasked_cognates_of_masked_CEN_P

AR.txt | tail -n +2 | awk –v OFS='\t' '{ print $2,$3-1,$4 }' >

GRCh38_masked_cognates.bed

13| (Recommended, Optional) Merge a blacklist for your genome assembly into your

exclude coordinates from Step 12. To download and merge a blacklist for hg38 provided by

ENCODE into a single exclude_coords.bed file, execute:

wget https://www.encodeproject.org/files/ENCFF356LFX/@@download/ENCFF356LFX.bed.gz

-q -O - | zcat | sort -k 1,1 -k 2,2n GRCh38_masked_cognates.bed - | bedtools merge

> exclude_coords.bed

TODO: Add note saying the blacklist is necessary for ANTICIPATED RESULTS?

14| Train a 10-label Segway model using 1% of your genome. Create a 10-label model

training on 1% of the genome from the archives created from Steps 7 and 8, excluding regions

from Steps 12 and 13, at 10 base pair resolution, using 10 simultaneous training instances by

executing:

segway train --resolution=10 --num-instances=10 --minibatch-fraction=0.01 --num-labels=10 --
max-train-rounds=10 --exclude-coords=exclude_coords.bed ENCFF509XSM_DOHH2_H3K4me1.genomedata
ENCFF745GML_DOHH2_H3K4me3.genomedata ENCFF592CSV_DOHH2_H3K27me3.genomedata
ENCFF890NAY_DOHH2_H3K27ac.genomedata ENCFF884IIL_DOHH2_CTCF.genomedata train_results

20

Segway prints a log of genomic regions it trains on and individual training jobs run on your

cluster or in local mode (Figure 3).

? TROUBLESHOOTING

Annotate the genome using the trained model • Timing < 1.5 h

15| Annotate the genome using the trained model from Step 14. The train_results

directory contains the final model and trained parameters. To annotate the whole genome from

our previously trained model, excluding regions from Steps 12 and 13, execute:

segway annotate --exclude-coords="exclude_coords.bed" --
bigBed=annotate_results/segway.layered.bb ENCFF509XSM_DOHH2_H3K4me1.genomedata
ENCFF745GML_DOHH2_H3K4me3.genomedata ENCFF592CSV_DOHH2_H3K27me3.genomedata
ENCFF890NAY_DOHH2_H3K27ac.genomedata ENCFF884IIL_DOHH2_CTCF.genomedata
train_results annotate_results

Segway prints a log of genomic regions it will annotate and individual identification jobs run on

your cluster or in local mode (Figure 4).

Segway writes its annotation to a BED file inside the “annotate” directory (annotate_results),

named segway.bed.gz. This is a tab-delimited file describing the chromosome regions and

their corresponding label number (Figure 5).

Analyze the annotation using Segtools • Timing < 30 min

16| Plot the emission parameters learned during the training task performed in the Step 14.

segtools-gmtk-parameters train_results/params/params.params

21

This creates the gmtk-parameters directory that contains a heatmap

(gmtk_parameters.stats.png) showing the learned parameters per label-track pairs. You can

run this command directly after the training task.

? TROUBLESHOOTING

17| Calculate and plot the length distribution of segments in each label, and the genomic

fraction covered by each label using segtools-length-distribution:

segtools-length-distribution annotate_results/segway.bed.gz

This creates the length_distribution directory that contains summary statistics in tab-delimited

format (length_distribution.tab and segment_sizes.tab) and two plots. The first plot

(length_distribution.png) shows the distribution of segment lengths for each label.

The second plot (segment_sizes.png) shows the fraction of total segments for each label and

the fraction of genomic bases covered by each label.

18| Calculate the enrichment of each segment label over a gene annotation using

segtools-aggregation. Download a gene annotation for your given assembly. In this

example, download the GRCh38/hg38 human gene annotation in Gene Transfer Format (GTF)

from GENCODE40:

wget

22

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_36/gencode.v36.anno

tation.gtf.gz

Calculate and plot the aggregation:

segtools-aggregation --mode=gene --normalize --outdir aggregate_gene

annotate_results/segway.bed.gz gencode.v36.annotation.gtf.gz

This command runs segtools-aggregation in “gene” mode and creates two figures showing

the enrichment of a segmentation over an idealized transcriptional

(aggregate_gene/feature_aggregation.splicing.png) and translational

(aggregate_gene/feature_aggregation.translation.png) gene model.

19 | Create a filtered GENCODE annotation list with only genes

zcat gencode.v36.annotation.gtf.gz | sed '/\(gene\t\|^#\)/!d' >

gencode.v36.genes.gtf

20| Create a list of GENCODE genes that overlap with each label from the produced

annotation in Step 15.

for label in {0..10}; do zcat annotate_results/segway.bed.gz | awk --assign

label=$label 'BEGIN{OFS="\t"} { if ($4==label) print $1,$2,$3 }' | bedtools

intersect -a gencode.v36.genes.gtf -b stdin | sed 's/.*gene_id "\([^"]\+\).*/\1/' |

uniq > "segway.${label}.gencode.v36.genes.bed" ; done

23

Visualize signal data and segmentation on the UCSC Genome Browser •

Timing < 2 h

To visualize our segmentation and signal data, make a track hub and visualize it on the UCSC

Genome Browser34

21| Create the directory hierarchy for the track hub:

mkdir -p trackhub/hg38

This creates the main directory trackhub that will contain all the information necessary for the

UCSC Genome Browser to locate your data. The hg38 subdirectory will contain your Umap-

filtered signal tracks and segmentations generated based on the GRCh38/hg38 genome

assembly.

22| Create a hub.txt file in the trackhub directory and add the following lines to the

beginning of the file:

hub DOHH2_ChIP-seq

shortLabel DOHH2 ChIP-seq

longLabel Segway annotation of DOHH2 ChIP-seq data

genomesFile genomes.txt

email your.email@example.com

24

This file describes the general properties of your track hub where the first word of each line is

the name of the property and the rest of the line is the value assigned to it.

23| Create a genomes.txt file in the trackhub directory file describing the genome

assembly and the path to the track property file trackDb.txt for that genome assembly:

genome hg38

trackDb hg38/trackDb.txt

24| Copy the signal files in bigWig format to the trackhub/hg38 directory with the cp

command:

cp *.bigWig trackhub/hg38

The command above copies all the files with the extension bigWig

25| Move the layered segmentation generated in Step 15 to the trackhub/hg38 directory.

Execute:

mv annotate_results/segway.layered.bb trackhub/hg38/

26| Create trackhub/hg38/trackDb.txt which describes how to display the tracks. Set

the following parameters for an optimal view of segmentation tracks.

25

track DOHH2_Segway

type bigBed 12

bigDataUrl segway.layered.bb

shortLabel DOHH2 segmentation

longLabel segmentation of DOHH2 cell line from ChIP-seq data

itemRgb on

visibility pack

Set the following parameters for the signal tracks.

track ENCFF509XSM_DOHH2_H3K4me1

type bigWig

bigDataUrl ENCFF509XSM_DOHH2_H3K4me1.bigWig

shortLabel DOHH2 H3K4me1

longLabel ChIP-seq signal in DOHH2

visibility full

maxHeightPixels 100:60:8

viewLimits 0:100

track ENCFF745GML_DOHH2_H3K4me3

type bigWig

bigDataUrl ENCFF745GML_DOHH2_H3K4me3.bigWig

shortLabel DOHH2 H3K4me3

longLabel ChIP-seq signal in DOHH2

visibility full

26

maxHeightPixels 100:60:8

viewLimits 0:100

track ENCFF592CSV_DOHH2_H3K27me3

type bigWig

bigDataUrl ENCFF592CSV_DOHH2_H3K27me3.bigWig

shortLabel DOHH2 H3K27me3

longLabel ChIP-seq signal in DOHH2

visibility full

maxHeightPixels 100:60:8

viewLimits 0:100

track ENCFF890NAY_DOHH2_H3K27ac

type bigWig

bigDataUrl ENCFF890NAY_DOHH2_H3K27ac.bigWig

shortLabel DOHH2 H3K27ac

longLabel ChIP-seq signal in DOHH2

visibility full

maxHeightPixels 100:60:8

viewLimits 0:100

track ENCFF884IIL_DOHH2_CTCF

type bigWig

bigDataUrl ENCFF884IIL_DOHH2_CTCF.bigWig

shortLabel DOHH2 CTCF

27

longLabel ChIP-seq signal in DOHH2

visibility full

maxHeightPixels 100:60:8

viewLimits 0:100

The UCSC Genome Browser provides many other options as described on its website

(genome.ucsc.edu/goldenpath/help/trackDb/trackDbHub.html#commonSettings).

27| Upload the track hub directory to a public web space. For example, to copy changes to a

remote server named yourserver with username yourname, execute:

rsync -a trackhub yourname@yourserver:/your/publicly/available/space

The -a option specifies rsync’s archive mode, which preserves all file attributes, recursively

copying files and directories.

28| Visit the UCSC Genome Browser (https://genome.ucsc.edu) and load your track hub. To

do so, select “My data” > “Track hubs” from the top menu and add the direct link to your

hub.txt file in the “URL” field. Push the “Add Hub” button. This will allow you to visualize your

segmentation as well as your signal tracks, if you included them in your track hub.

? TROUBLESHOOTING

https://genome.ucsc.edu/goldenpath/help/trackDb/trackDbHub.html#commonSettings
https://genome.ucsc.edu/index.html

28

? TROUBLESHOOTING

 Table 1 contains troubleshooting recommendations.

• Timing

The entire protocol takes < 8 h, with approximately 3 h of configuration and entering commands

and approximately 5 h of computation. We took the timings for this protocol from a Grid Engine

cluster system where we submitted each job to a compute node running at 2.6 GHz with 4 MB of

cache and 32 effective CPU cores.

Step 1, installing the prerequisite software: < 30 min

Steps 2–3, downloading data from ENCODE: < 1.5 h. This step largely depends on the speed of

the internet connection used to download the datasets. We downloaded the datasets at 3 MB/s–

4 MB/s.

Steps 4–6, filtering uniquely mappable regions: 10 min

Step 7–8, creating the Genomedata archives: 20 min

Steps 9–14, prepare and train Segway with a 10-label model: 30 min

Step 15, annotate the genome with the trained Segway model: 1.5 h

Steps 16–20, analyzing the annotation with Segtools: 30 min

Steps 21–28, create and upload a trackhub of the annotation: 2 h. The timing on these steps

depends on the speed of the internet connection used to upload the datasets.

For smaller datasets not in this protocol, such as K562 GRCh37/hg19 with the same ChIP-seq

targets from ENCODE, the computation time is substantially reduced. The speed of the protocol

29

largely depends on the availability of processors Segway can submit jobs to and the speed of

processors themselves. Any bottlenecks on a cluster system or running Segway on a limited

number of processors will substantially increase the protocol length.

ANTICIPATED RESULTS

Segway produces an annotation for a given cell type. We illustrate the results of Segway’s

annotation on DOHH2 from Step 15 by exploring the output of Segtools produced in the Steps

16–20 and visualizing the segmentation on the UCSC Genome Browser using the track hub

produced in Steps 21–28.

Exploring the parameters learned during the training task

The command described in Step 16 creates the gmtk-

parameters/gmtk_parameters.stats.png file showing the Gaussian parameters learned by

Segway during the training task described in Step 14. The file contains a heatmap (Figure 6)

with the data tracks in rows and the labels in columns. For each track-label combination,

Segway learns a probability distribution over track values given a label. By default, it uses a

Gaussian, or normal distribution, for this probability distribution. The colors on the heatmap

represent row-normalized Gaussian means, where dark blue indicates a low mean and dark red

indicates a high mean. The sizes of the black rectangles represent the variance parameter of

the Gaussian, where larger rectangles indicate a higher variance. For example, label 1

30

associates with high values for H3K4me3, H3K27ac, and H3K4me1 tracks, shown in red. Low

values occur for CTCF and H3K27me3, shown in blue. This observation allows us to

hypothesize that label 1 is associated with active genes’ transcription start sites.

Exploring the segment length distribution

The command described in Step 17 creates the length_distribution directory. This directory

contains summary statistics in tab-delimited format (length_distribution.tab and

segment_sizes.tab). Segtools uses these statistics to generate summary plots. The first plot

(length_distribution.png) (Figure 7) shows the distribution of segment lengths for each

label.

The second plot (segment_sizes.png) (Figure 8) shows the fraction of total segments for each

label and the fraction of genomic bases covered by each label. Some segments cover very

large regions. In particular, Label 1 has some segments with extremely large length. Since the

segmentation included some large assembly gaps, Segway picked the default highest average

mean label. This is a result of the protocol using a genome sizes file for describing the reference

genome used in the analysis and not a more precise description of the genome such as an

Assembly Golden Path42 (AGP) file where such regions would not be considered for training or

annotation.

31

Exploring the segment enrichment against gene annotation

The command described in Step 18 generates the file

aggregate_gene/feature_aggregation.splicing.png, which summarizes the occurrence

of each segmentation label (y-axis) relative to an idealized transcriptional gene model separated

into 8 components (x-axis). For example, one can see the enrichment of label 1, in red, over

components generally found around the 5′ end of a gene (Figure 9).

Visualize Segway results on a genome browser

Figure 10 illustrates the track hub generated in Steps 21–28 loaded on the UCSC Genome

Browser. The first track shows the GENCODE annotation of the CDK1 locus. The subsequent

tracks display the signal values from the five bigWig files generated in Step 3. Finally, the last

track is the segmentation generated with Segway. In this example, labels 1 and 2 are present

around the 5′ end of the CDK1 gene. Labels 5 and 6 cover the middle and end of the gene.

These observations are consistent with the enrichments shown in Figure 9.

Acknowledgments

We thank Carl Virtanen and Zhibin Lu (University Health Network High Performance Computing

Centre and Bioinformatics Core) for technical assistance. We thank Paul Kitts and Valerie

Schneider for providing masked regions from the Genome Reference Consortium analysis set.

We thank J. Seth Strattan for assistance with locating the Genome Reference Consortium

analysis set and the signal datasets used in this protocol. We thank Thomas Carroll for

providing support for ChIPQC and for expediting work on ChIPQC’s GRCh38 annotation.

32

This work was supported by the Canadian Cancer Society (703827 to M.M.H.), the Ontario

Institute of Cancer Research (OICR) through funding provided by the Government of Ontario

(CSC-FR-UHN to John E. Dick), the Ontario Ministry of Research, Innovation and Science

(ER15-11-233 to M.M.H.), the Natural Sciences and Engineering Research Council of Canada

(RGPIN-2015-03948 to M.M.H. and an Alexander Graham Bell Canada Graduate Scholarship

to C.V.), the Ontario Ministry of Training, Colleges and Universities (Ontario Graduate

Scholarship to C.V.), the University of Toronto Medicine by Design (C1TPA-2016-04 to M.M.H.

and C1TPA-2016-01 to M.M.H.), the McLaughlin Centre (MC-2015-16 to M.M.H.), the National

Institutes of Health (GM119550 to J.R.H.), the American Cancer Society (RSG-13-216-01-DMC

to J.R.H.), and the Princess Margaret Cancer Foundation.

Author Contributions

E.G.R. wrote the introduction steps 1–4, 6–13 and Boxes 1 and 5.

M.M. wrote steps 5 and 14–24 of the procedure and the anticipated results.

E.G.R. and R.C. tested the protocol and improved the software.

M.K. and D.C. provided additional troubleshooting and testing.

A.K., R.A, R.C, and J.R.H wrote Box 2.

M.K. wrote Box 3.

C.V. wrote Box 4

R.A. and J.H. wrote Box 6.

E.G.R. and M.M.H. designed and coordinated the production of the overall protocol.

33

Competing Financial Interests

The authors declare that they have no competing financial interests.

34

Boxes

Box 1 | Installing Prerequisite Software

Segway is only supported on Linux.

There are two distinct methods to install Segway on your machine.

1. Install Segway as an administrator, for all users on the system. This is the easier

method, if you have the administrator privileges.

2. Install Segway without any special privileges, for one user.

For either method you need to install:

- Python (2.7)

- Hierarchical Data Format 5 (HDF5) (1.8.17)

- Graphical Models Toolkit (GMTK) (1.4.4)

- Segway (2.0.2)

- R (3.3)

- Segtools (1.14)

- bedtools (2.26.0)

- bigWigToBedGraph

- bedGraphToBigWig (4)

- bedToBigBed (2.7)

35

- GNU Parallel (20180522)

Installing Segway as administrator

1. Install Python (with pip), HDF5, R, and GNU Parallel with your system package

manager

Ubuntu or Debian 8:

sudo apt-get install python2.7 libhdf5-serial-dev hdf5-tools r-base

bedtools python-pip parallel

CentOS 7, Red Hat Enterprise Linux 7, Fedora:

sudo yum -y install hdf5 hdf5-devel R BEDTools readline-devel python-devel

parallel

For Red Hat Systems we recommend using the existing installed version of Python 2.7.

Upgrading the system Python can break yum. For Fedora 22+ only: replace ‘yum’ with

‘dnf’.

Install R dependencies:

From an interactive R environment (with sudo access):

install.packages(c("latticeExtra", "reshape2"), repos='http://cloud.r-

project.org/')

http://cloud.r-project.org/
http://cloud.r-project.org/

36

All Linux Distributions:

GMTK

wget http://melodi.ee.washington.edu/downloads/gmtk/gmtk-1.4.4.tar.gz

tar xf gmtk-1.4.4.tar.gz

cd gmtk-1.4.4

./configure

make

make install

Segtools

sudo pip install segtools

Segway

On Debian only:

 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:"/usr/lib/x86_64-linux-

gnu/hdf5/serial"

 export C_INCLUDE_PATH=$C_INCLUDE_PATH:"/usr/include/hdf5/serial"

 sudo pip install segway

http://melodi.ee.washington.edu/downloads/gmtk/gmtk-1.4.4.tar.gz
http://melodi.ee.washington.edu/downloads/gmtk/gmtk-1.4.4.tar.gz

37

2. Install UCSC Genome Browser BigWig and BigBed tools43

The remaining software prerequisites are utilities distributed as standalone binaries. These

utilities to convert genomic signal and annotation data between different formats. Ensure your

PATH environment variable contains the location of your downloaded binaries. Download

remaining utilities with the following commands:

bigWigToBedGraph

wget http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/bigWigToBedGraph

chmod +x bigWigToBedGraph

bedGraphToBigWig

wget http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/bedGraphToBigWig

chmod +x bedGraphToBigWig

mv bedGraphToBigWig "${HOME}/.local/bin/"

bedToBigBed

wget http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/bedToBigBed

chmod +x bedToBigBed

http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/bigWigToBedGraph
http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/bigWigToBedGraph
http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/bedToBigBed

38

Installing Segway without administrator privileges

We highly recommend, when possible, getting an administrator to install the necessary

software. Alternatively, we recommend using Bioconda44 to install all the necessary software

for this protocol. Bioconda is a suite of software pacakges that specialize in Bioinformatics. To

use the packages available on Bioconda, the conda package and environment manager must

be installed. If you have Anaconda (https://anaconda.org/) or Miniconda

(https://conda.io/miniconda.html) already installed, conda is already installed on your system.

If you do not have either, we recommend downloading and installing Miniconda. Miniconda

runs on top of either Python 2 or Python 3. To determine which version of python version your

system is running, run the command:

python --version

If you do not have Python installed, if possible ask your system adminstrator to install it for

you. After determining which version of Python you have installed, install either a Python 2 or

a Python 3 based Miniconda.

Installing Python 2 based Miniconda:

wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh

chmod +x Miniconda2-latest-Linux-x86_64.sh

./Miniconda2-latest-Linux-x86_64.sh

Installing Python 3 based Miniconda:

wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh

chmod +x Miniconda3-latest-Linux-x86_64.sh

https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh
https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh

39

./Miniconda3-latest-Linux-x86_64.sh

To add Bioconda packages for installation with conda, add the Bioconda channel:

conda config --add channels defaults

conda config --add channels conda-forge

conda config --add channels bioconda

The conda packages "segway" and "segtools" are the only two packages required for this

protocol. We recommend setting up a new conda environment and installing the packages to

this environment. To setup an environment named "segway" with the exact packages

necessary for this protocol run the following command:

conda create –-name segway segway=2.0.2 segtools=1.1.14 parallel=20180522

To activate the environment and gain access to the software necessary to the protocol, enter

the command:

conda activate segway

To return to back to your old environment enter the command:

conda deactivate

If any installation step fails, refer to ? TROUBLESHOOTING.

40

Box 2 | Generate ChIP-seq Signal Files Using MACS2

Segway takes its input from signal files—normalized representations of ChIP-seq reads within

a genomic region. You can convert aligned ChIP-seq data in BAM format to signal files in

bedGraph or bigWig format. For visualization, bigWig is necessary. The bedGraph format

may also be used in this protocol.

You should filter your aligned reads and compute predominant fragment lengths for the ChIP-

seq data prior to generating the fold-enrichment signal files using the MACS2 software. We

compare fragment-lengths to read-lengths in order to provide estimates about the amount of

background signal in the ChIP-seq data.

To install the software necessary for generating ChIP-seq signal demonstrated here, in a

Bioconda environment execute:

conda install phantompeakqualtools sambamba bedtools macs2 ucsc-bedclip

ucsc-bedgraphtobigwig

Estimate predominant fragment length

The program phantompeakqualtools45–47 (v1.1) will calculate the predominant insert-size (or

fragment length) based on strand cross-correlation analysis

Filtering aligned reads to generate a tagAlign file

The Sambamba48 program is used to process BAM files. If your files are in tagAlign format

then you do not need to use Sambamba.

Prior to generating the fragment length estimation, execute the following to filter a ChIP-seq

41

BAM file and generate a tagAlign file for the phantompeakqualtools and MACS2 program. For

example, to generate a tagAlign file named chip_TA.tagAlign.gz from

mycellchipseq.bam, execute:

sambamba view --nthreads "$NUM_THREADS" --filter 'not(unmapped or
mate_is_unmapped or failed_quality_control or secondary_alignment or
duplicate) and mapping_quality >=30' –format=bam mycellchipseq.bam |
bedtools bamtobed -i stdin | awk 'BEGIN{OFS="\t"}{$4="N";$5="1000";print
$0}' | gzip -c > chip_TA.tagAlign.gz

You are now ready to estimate the predominant fragment lengths using cross-correlation

analysis. The input file can be in tagAlign or BED format.

Running phantompeakqualtools

From the command line, execute the following:

1. Run the phantompeakqualtools program from the command line in order to use cross-

correlation analysis to estimate the predominant fragment lengths. To use multiple

threads with phantompeakqualtools, use the -p option. For example, to run

phantompeakqualtools with $NUM_THREADS threads, execute:

run_spp.R -c=chip_TA.tagAlign.gz -p="$NUM_THREADS" -filtchr=chrM -
savp=chip_TA.cc.plot.pdf -out=chip_TA.cc.qc

2. Execute the following command to write only the first value for estimated fragment

length into the output file. This value (in almost all cases) is the best estimate of

predominant fragment length.

sed -i -r 's/,[^\t]+//g' chip_TA.cc.qc

The output file chip_TA.cc.qc contains NSC/RSC results in a tab-delimited file of 11

42

columns. The columns are filename, number of reads, estimated fragment length, strand

cross-correlation at estimated fragment length, read length, strand cross correlation at read

length, strand shift with minimum cross-correlation, minimum cross-correlation, normalized

strand cross-correlation coefficient NSC, relative strand cross-correlation coefficient RSC,

and Quality Tag.

Notably, the estimated fragment length (in column 3) can contain multiple comma-separated

values. We recommend using the first value, as this value is the best estimate of predominant

fragment length in almost all cases.

NSC values less than 1.05 and RSC values substantially less than 1 have high background

signal or low signal to noise ratios, which indicates poor quality data or low abundance of

DNA-protein binding events46. In our example, the ‘chip_TA.cc.plot.pdf’ output file

contains the cross-correlation plot.

Generate fold enrichment coverage tracks using MACS2

The normalized signal track generation requires the use of MACS2

(https://github.com/taoliu/MACS/).

MACS will use as input a tagAlign file and a control ChIP-seq sample tagAlign file. Use the

same procedure described above to convert your control file into tagAlign format if starting

with a BAM file. The MACS2 program will ultimately produce a fold-enrichment file in the

bigWig format. To use MACS2 to produce this output, execute the following from the

command line:

https://github.com/taoliu/MACS/

43

1. Create the output directory for the MACS2 results:

mkdir -p peak_output

2. Using MACS2, generate the narrow peaks and preliminary signal tracks using

the tagAlign file generated directly from the BAM file. The --gsize parameter passes

the effective genome size to MACS2. Using bedtools genomecov and a mappability

track for a read-length of 50, we calculate the effective genome size for hg38 to be

2.8e9. MACS2 uses the effective genome size to calculate the background Poisson

λ. You should always use your input ChIP-seq data’s fragment length for MACS2. For

example, to generate the signal tracks for tagAlign file chip_TA.tagAlign.gz and

control ChIP-seq sample tagAlign file control_TA.tagAlign.gz with a fragment

length (specified with --extsize) of 250 and a p-value cutoff (specified with --

pvalue) of 0.01, execute:

macs2 callpeak --treatment chip_TA.tagAlign.gz --control
control_TA.tagAlign.gz --format BED --name peak_output/chip_TA --gsize
2.8e9 --pvalue 1e-2 --nomodel --extsize 250 --keep-dup all --bdg --SPMR --
shift 0

The --keep-dup all option specifies that MACS2 should keep all duplicate tags at the exact

same location. The --bdg option produces peak_output/chip_TA_treat_pileup.bdg,

which we use for noise removal. The --shift 0 option specifies that there should be no

arbitrary shift.

3. Using MACS2, generate the final fold-enrichment signal tracks. To generate the signal

tracks for our example, execute:

macs2 bdgcmp --tfile peak_output/chip_TA_treat_pileup.bdg --cfile
peak_output/chip_TA_control_lambda.bdg --outdir peak_output --ofile

44

chip_TA_FE.bdg --method FE

4. Using bedClip, remove coordinates outside those specified in your chromosome

sizes file, and generate a sorted bedGraph file. You will need a chromosome size file.

This is a tab-delimited file with two columns; chromosome name (column 1), and

chromosome size in base pairs (column 2). To download the chromosome sizes file

for your genome see the bedClip command line help text. For hg38, a sizes file can be

downloaded from

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.chrom.sizes. For

example, to remove any coordinates in chip_TA_FE.bdg that are outside of those

specified in hg38.chrom.sizes, and generate and sort the resulting bedGraph file,

execute:

bedClip -truncate peak_output/chip_TA_FE.bdg hg38.chrom.sizes
peak_output/chip_TA.fc.signal.bedGraph

sort -k 1,1 -k2,2n chip_TA.fc.signal.bedGraph &>
chip_TA.fc.signal.sorted.bedGraph

5. (Optional) Using bedGraphToBigWig, convert the resulting bedGraph file to bigWig

format. Segway can directly use bedGraph files as signal tracks. However, bigWig

format enables more efficient visualization on the UCSC Genome Browser of large,

dense, and continuous data. For example, to convert

chip_TA.fc.signal.sorted.bedGraph to bigWig format:

bedGraphToBigWig peak_output/chip_TA.fc.signal.sorted.bedGraph
GRCh38_EBV.chrom.sizes.tsv peak_output/chip_TA.fc.signal.sorted.bigWig

6. (Optional) Remove intermediate files

rm -f peak_output/chip_TA_peaks.xls

rm -f peak_output/chip_TA_peaks.narrowPeak

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.chrom.sizes

45

rm -f peak_output/chip_TA_summits.bed

rm -f peak_output/chip_TA_FE.bdg

rm -f peak_output/chip_TA.fc.signal.bedGraph

rm -f peak_output/chip_TA_treat_pileup.bdg

rm -f peak_output/chip_TA_control_lambda.bdg

For problems encountered in this Box, refer to ? TROUBLESHOOTING

46

Box 3 | Downloading ChIP-seq data from ENCODE

The ENCODE Project (https://www.encodeproject.org/) provides raw and processed ChIP-seq

data for transcription factors and histone modifications on its website. Locate data of interest

through this website’s search or the ENCODE data matrix

(https://www.encodeproject.org/matrix). The data matrix makes it easy to explore all available

experiments for your cell type of interest.

For example, we want to acquire ChIP-seq data for H3K4me1 in the DOHH2 cell type. This

cell type is derived from the pleural effusion of a B cell lymphoma patient. We will therefore

use the search box to find it directly.

1. Open https://www.encodeproject.org/ in your browser.

2. In the search box at the upper right corner of the page, type in “DOHH2 H3K4me1

ChIP-seq” and press Enter (Figure B3.1).

2.

3. Click on any of the results that match your preferences to visit the experiment

summary page. If you plan to use data from several ChIP-seq experiments, consider

that different labs may have generated the data. These labs might also use different

laboratory protocols. You can read these details in the experiment summary page

(Figure B3.2).

4. In the “File” section, under the “File details” section there are two panels for accessing

raw and processed data (Figure B3.3). Each panel provides detailed information on

https://www.encodeproject.org/
https://www.encodeproject.org/matrix/?type=Experiment
https://www.encodeproject.org/
https://www.encodeproject.org/

47

each file. The “File type” and “Mapping assembly” columns guide you to the format you

need for your analysis. If the “Biological replicate” column is empty or “1,2”, this

indicates replicates are merged. Find the file type and genome assembly you need.

5. Click the download icon in the “Accession” column in the right of accession numbers to

download a file immediately. Alternatively, right click on the icon and copy the link

location to use with "wget" command later. In the example below, we download the

signal file of H3K4me1 ChIP-seq experiment in DOHH2:

URL="https://www.encodeproject.org"

ACCESSION="ENCFF509XSM"

FORMAT="bigWig"

CELL="DOHH2"

MARK="H3K4me1"

wget "$URL/files/$ACCESSION/@@download/$ACCESSION.$FORMAT" \

 -O "${ACCESSION}_${CELL}_${MARK}.$FORMAT"

ENCODE project website has a detailed application program interface (API) documentation

(https://www.encodeproject.org/help/rest-api/). The ENCODE project API allows you to

automate your search queries and downloads. The preferred input for Segway is the “fold

change over control” bigWig signal file, because it is already processed and normalized. It is

possible to generate the signal file from raw files of any ChIP-seq experiment using MACS2

(see Box 2).

https://www.encodeproject.org/
https://www.encodeproject.org/help/rest-api/

48

For the examples in this manuscript, we download the signal files of DOHH2 ChIP-seq

datasets for H3K4me1 (ENCFF509XSM), H3K4me3 (ENCFF745GML), H3K27ac

(ENCFF890NAY), H3K27me3 (ENCFF592CSV) and CTCF (ENCFF884IIL). These bigWig

files average approximately 1 GiB each in size. To download all of these files, execute the

following script in a bash terminal:

URL="https://www.encodeproject.org"

FORMAT=bigWig

CELL=DOHH2

MARKS=(H3K4me1 H3K4me3 H3K27ac H3K27me3 CTCF)

ACCESSIONS=(ENCFF509XSM ENCFF745GML ENCFF890NAY ENCFF592CSV ENCFF884IIL)

for i in ${!MARKS[@]}

do

 ACCESSION=${ACCESSIONS[$i]}

 MARK=${MARKS[$i]}

 wget "$URL/files/$ACCESSION/@@download/$ACCESSION.$FORMAT" \

 -O "${ACCESSION}_${CELL}_${MARK}.${FORMAT}"

done

https://www.encodeproject.org/

49

Box 4 | Quality control for ChIP-seq data

For Segway to produce high-quality segmentations, input chromatin immunoprecipitation

sequencing (ChIP-seq) data must have sufficient quality. Quality control methods for ChIP-

seq data can ensure this.

Several technical factors affect the quality of ChIP-seq data.49 Often, most important is the

specificity of the antibody employed. Also key is using a sufficient number of cells and

appropriate controls. Fragmentation, library construction, and sequencing protocols used also

influence data quality.49 Finally, the alignment software used influences signal mapping

quality.

This box explains how to compute different quality control metrics using FastQC,50

ChIPQC,51,52 and NGS-QC.53 We provide general guidelines, which provide a clear means of

assessing data quality. There are, however, a number of different ways of assessing quality

and many methods depend greatly upon the particulars of the assessed experiment. There is

not yet a consensus on a general and optimal means of assessing ChIP-seq data quality and

we suggest that interested readers consult some of the broad literature on this topic.45,46,51,53–57

Installation of QC tools and dependencies

Installing with Bioconda

In an environment of your choice, install the fastqc, sambamba, and ChIPQC Bioconductor

packages:

50

conda install fastqc sambamba bioconductor-chipqc

Installing without Bioconda

FastQC50: follow instructions at http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/INSTALL.txt.

Sambamba48: follow instructions at http://lomereiter.github.io/sambamba or our instructions in

Box 2.

ChIPQC:51,52

1. Install: R58 3.4.3

2. Install Bioconductor59 3.6 and ChIPQC version 1.14.0, by executing the following

within the R environment:

source("http://bioconductor.org/biocLite.R")biocLite() # install

Bioconductor

biocLite("DiffBind") # install latest version of dependency

biocLite("ChIPQC") # install ChIPQC

biocLite("TxDb.Hsapiens.UCSC.hg38.knownGene") # for GRCh38/hg38

Sequence data quality control with FastQC

FastQC50 reports on potentially problematic aspects of the sequencing itself. This includes

base qualities, G+C bias, systematic overrepresentation of sequences, and several other

metrics. To run FastQC on BAM files, such as the ENCODE CTCF ChIP-seq samples, whose

signal files were downloaded in Box 3, execute:

 fastqc ENCFF863PSQ.bam ENCFF092CZO.bam

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/INSTALL.txt
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/INSTALL.txt
http://lomereiter.github.io/sambamba

51

One useful metric is library complexity—a measure of the number of distinct molecules in the

library. Low complexity often results in repeated sequencing of duplicates, yielding little

information.60 You can estimate library complexity from FastQC’s duplicate sequence plot.

More detailed analyses can be performed, if necessary, using preseq.61 A large fraction of

duplicate sequences is often a result of insufficient sequence diversity, which can suggest an

inherent experimental bottleneck, such as an insufficient number of input cells.55,60

Additional considerations include checking the quality of read mapping, the proportion of

reads aligning to a genomic position, the number passing a mapping quality threshold, and

the abundance of duplicate reads.

Assessing ChIP-seq data quality

To assess ChIP-seq data quality; you should perform overall assessment of both ChIP-seq

reads and the effects of random sub-sampling, when possible. You should use frequency of

reads in peaks (FRiP) with ChIP-seq peak calls, but we do not focus on this approach since

Segway operates directly upon signal. It is useful to assess the consistency across ChIP-seq

replicates, such as via an irreproducible discovery rate62. ENCODE conducts this analysis for

all of its ChIP-seq datasets.46 This is currently non-trivial, however, to use in one’s own

workflow.

Testing ChIP-seq quality with ChIPQC

ChIPQC51,52 is an R58 Bioconductor59 package that evaluates metrics of mapping, filtering, and

duplication rates, as well as ChIP-seq signal distribution and structure. While ChIPQC usually

also computes FRiP, from called peaks, here we will run it using only signal data.

52

1. Define or use the previously exported NUM_THREADS environment variable.

2. Determine the maximum memory for ChIPQC to use in GiB:

MAX_M_USE=$(($(free -g | head -3 | tail -1 | tr -s ' ' | cut -d ' ' -f 4) -

1))

On a cluster, use instead 1 GiB less than the amount allocated to your job.

3. Create a sorted, indexed, and duplicate marked BAM file, using Sambamba48. For

example to do so for the ENCFF863PSQ.bam, run the following:

a. sambamba sort --memory-limit "${MAX_M_USE}GiB" --nthreads

"$NUM_THREADS" --compression-level 0 --out "${TMPDIR:-

/tmp}/ENCFF863PSQ.sorted.bam" ENCFF863PSQ.bam

b. sambamba markdup --nthreads "$NUM_THREADS" --compression-level

9 --tmpdir="$TMPDIR" "${TMPDIR:-/tmp}/ENCFF863PSQ.sorted.bam"

/dev/stdout | tee ENCFF863PSQ.sorted.markeddup.bam | sambamba

index --nthreads "$NUM_THREADS" /dev/stdin

ENCFF863PSQ.sorted.markeddup.bam.bai

c. rm -f "${TMPDIR:-/tmp}"/ENCFF863PSQ.sorted.bam*

4. Create an experiment description file for ChIPQC. This file describes the ChIP-seq

samples that ChIPQC will analyze. ChIPQC operates on each input file, which might

be a single technical replicate, with pooled sequencing lanes, or a single biological

replicate, merged from multiple technical replicates. The content of a single unit of

quality assessment—a single file—depends upon your experimental setup and

downstream experimental goals. Each row corresponds to one ChIP-seq file, while

each column describes the data associated with that file. We highlight a common use-

case; refer to the package documentation for a detailed description of all available

53

fields. You should specify the following columns: SampleID, Tissue, Factor,

Replicate, bamReads, ControlID, bamControl, and Peaks. These fields act merely

as annotations of your data and do not alter ChIPQC’s operation, with two exceptions.

Two fields must contain valid file paths: bamReads, which must contain the full path to

the above sorted and duplicate marked BAM file of the ChIP-seq experiment. The

other field, bamControl, must contain the full path to a corresponding set of control

reads, in a sorted and duplicate marked BAM, such as from an input (antibody-free)

experiment. In this case, without peak calls, set Peaks to NA. This will cause ChIPQC

to compute all metrics that do not depend upon a peak set. If you have a peak file, set

Peaks to the file name and additionally specify a PeakFormat column, if the file is not

in BED format. Even if you are only analyzing a single replicate, you must still specify

the Replicate column. You may set it to 1 in this case.

Name this file QCexperiment.csv and delimit its columns with tabs. For example, a

single replicate may result in a file like this:

SampleID Tissue Factor Replicate bamReads ControlID

bamControl Peaks

ENCFF863PSQ DOHH2 CTCF 1 ENCFF863PSQ.sorted.markeddup.bam

ENCFF631ENA ENCFF631ENA.sorted.markeddup.bam NA

3. Execute the following within the R environment:

library("TxDb.Hsapiens.UCSC.hg38.knownGene")

library("ChIPQC")

samples <- read.delim("QCexperiment.csv", stringsAsFactors=FALSE)

54

experiment <- ChIPQC(samples, annotation="hg38")

Specify the assembly employed via the annotation parameter. We used GRCh38/hg38

above, but you can also, for example, use GRCh37/hg19 instead via annotation="hg19".

4. Generate the output report, summary, and plots of interest by executing in the R

environment:

disable faceting when using only a single sample

facet <- ifelse(nrow(samples) > 1, TRUE, FALSE)

write.table(QCmetrics(experiment), file='QCmetrics.csv')

ChIPQCreport(experiment, facet=facet)

The ChIPQC documentation contains additional details, including other available plots.52

? TROUBLESHOOTING

Interpreting ChIPQC results

Assessing read mapping quality

Verify that ChIP-seq results have a substantial portion of uniquely mapped reads, without an

unexpectedly high proportion of reads filtered out due to insufficient quality. Generally, at least

50% of reads in an experiment should map uniquely, with lower values expected for input

data, which lacks a targeting antibody. This varies greatly, however, and depends on the

55

species analyzed.55,56 In human and mouse ChIP-seq samples, expect over 70% of reads to

map uniquely.55,56 You should also assess the duplication rate—a ratio of unique to total

reads. This varies greatly, but you should expect for it to be much less in control samples and

it should generally not exceed 50%.52

Assessing ChIP-seq signal distribution

You should also assess the read cross-correlation, as a metric of ChIP-seq data quality. The

ChIPQC cross-correlation plot should have a clear peak at the fragment length in

successfully-enriched samples.52 The normalized strand cross-correlation coefficient within

the QC metrics file should be greater than 1.05, while the relative strand cross-correlation

coefficient should be greater than 0.8.46 Bailey et al.55 describes how to use and interpret this

metric further (Box 2 of Bailey et al.55).

Additionally, evaluate ChIPQC’s coverage histograms and their standardized standard

deviation (SSD), normalized to read depth. Expect the coverage histogram to have a non-

negligible “tail” and for SSD values to be greater than 1, generally above 1.5. Expect controls

to have SSD values of around 1. Control SSDs greater than 1 might indicate aberrant

enrichment.52

Subsampling to assess ChIP-seq quality with NGS-QC

Random sub-sampling on ChIP-seq profiles provides a means of computing quality metrics

that do not depend upon peak calling. Importantly, such metrics are comparable between

sharp (transcription factors) and broad (histone modifications) peaks,53 both of which are

frequently used together by Segway. The Next Generation Sequencing Quality Control

Generator (NGS-QC)53,63,64 provides these metrics for a wide array of ChIP-seq datasets. It

56

uses measurements of global deviations of random read subsets with respect to the full set of

aligned reads to assign quality scores.64 NGS-QC randomly subsamples 90%, 70%, and 50%

of reads and counts reads in subsampled and full datasets in 500–base-pair bins. NGS-QC

measures the variance from the expectation of the same percentage decrease in read counts.

It quantifies the proportion of these bins that are below 2.5%, 5%, or 10% of this expected

fraction, and each threshold forms a component of the quality score. These scores form labels

for ChIP-seq data quality from A–D, for each threshold. Therefore, the highest rating is “AAA”,

while the lowest is “DDD”.64 NGS-QC has pre-computed quality metrics for many public

datasets, including some ENCODE data. Consult these if available. Otherwise, compare your

data to them, as outlined below.

Use NGS-QC via its Galaxy65 instance, as follows:

1. Navigate to: http://galaxy.ngs-qc.org/

2. Create an account.

3. Upload BAM files, using FTP.

a. From the directory containing the BAM files to upload on the command line, run

ftp galaxy.ngs-qc.org

b. Login using the previously created credentials.

c. Execute:

i. prompt (disables confirmation of each individual upload)

ii. mput <files>

iii. exit

d. Navigate to the Galaxy instance, and select “Get Data” > “Upload file” from the

left panel.

http://galaxy.ngs-qc.org/

57

e. Select the files uploaded via FTP, using the “Choose FTP file” option.

4. Access the NGS-QC command under “NGS-QC” > “NGS-QC Generator“. Fill in the

provided form to assess the uploaded data, following the NGS-QC guidelines

(http://www.ngs-qc.org/tutorial.php#part2). We recommend selecting three replicates

of the QC computation, to mitigate against sampling bias. Specify the genome to

which the uploaded data was aligned, from the available list. At this time,

GRCh38/hg38 is not available. For the other parameters, use the defaults.

5. Compare against existing public datasets, selecting the target of the ChIP-seq

experiment at the bottom of the “NGS-QC Generator” interface, when it lists your

target.

6. Once Galaxy indicates that the tasks have completed (turning green), select the “View

Data” button for the task starting with “Results”. Then inspect each replicate, especially

its quality rating and percent uniquely mapped reads. Evaluate them using the criteria

above.

Mendoza-Parra et al.63 and the NGS-QC tutorial (http://www.ngs-qc.org/tutorial.php#part4)

provide details on how to interpret the results.

http://www.ngs-qc.org/tutorial.php#part2
http://www.ngs-qc.org/tutorial.php#part4

58

Box 5 | Accelerating Segway using a compute cluster

We designed Segway to run on a large variety of cluster systems. Segway uses the

Distributed Resource Management and Application API66 (DRMAA) version 1 for submitting its

jobs to a cluster. This interface has been implemented for a variety of cluster systems

including Grid Engine67 (GE), Condor68, Portable Batch System69 (PBS / Torque), and

Platform Load Sharing Facility70 (LSF).

Installing DRMAA

We recommend that a cluster administrator installs DRMAA. With the exception of Grid

Engine, which has DRMAA installed by default, each cluster system has its own specific

installation procedure. The general steps for installing DRMAA are as follows:

1. Download and build the DRMAA implementation for your cluster system:

Grid Engine

Not applicable: installed by default

Torque or PBS Pro

https://sourceforge.net/projects/pbspro-drmaa/

Platform Load Sharing Facility

https://sourceforge.net/projects/lsf-drmaa/

https://sourceforge.net/projects/pbspro-drmaa/
https://sourceforge.net/projects/lsf-drmaa/

59

Slurm workload manager

https://github.com/natefoo/slurm-drmaa/releases

2. Set the environment variable DRMAA_LIBRARY_PATH to the full name and path of the

DRMAA library. For example, if you have GE installed in /sge/lib/linux-x64 execute:

export DRMAA_LIBRARY_PATH="/sge/lib/linux-x64/libdrmaa.so"

Computer cluster memory settings

For Grid Engine only, in order to improve Segway's handling of memory usage, a

"mem_requested" resource must be setup by the system adminstrator for Segway to use.

After Segway has been installed, this can be achieved by running:

python –m segway.cluster.sge_setup

Compute cluster settings in Segway

Some cluster configurations require submitted jobs to have specific settings. Segway can

specify cluster specific settings with the --cluster-opt option. This option passes on what

would normally be set as options from your native job submission command (such as qsub

from Grid Engine or Torque). For example, for Segway to submit jobs to a Grid Engine queue

named bioinformatics use the option:

--cluster-opt="-q bioinformatics"

Verifying job submission by Segway

https://github.com/natefoo/slurm-drmaa/releases

60

When Segway submits jobs, it logs each submission to the console. If the log entry starts with

“queued” then DRMAA is running successfully. If the log entry starts with “running locally”,

then Segway is not submitting the jobs to the cluster and they are instead running “locally” on

the same machine that contains the Segway process.

61

62

Box 6 | Methods to compare and analyze segmentations

Comparing a new segmentation with previously annotated segmentations can be used to help

assign biological meaning to the numbered labels generated by Segway (e.g., patterns

associated with TSS, promoters, or enhancers). One strategy for making these comparisons

is to visualize a new segmentation alongside a published segmentation in the UCSC Genome

Browser29 and compare the un-annotated labeled regions to previously annotated labels. For

example, we can compare the DOHH2, a B-cell lymphoma cancer cell line, segmentation to a

published segmentation of a lymphoblastic B-cell line, GM12878, from the Ensembl

Regulatory Build.28 The Ensembl Regulatory Build partitioned the genome into regulatory

regions and 18 cell lines are available for through the UCSC Genome Browser in the hg38

assembly. The regulatory segmentation employs color-coding to identify the regulatory

elements represented by each label (as illustrated below).

In a UCSC track hub, we can visually compare the DOHH2 segmentation and ChIP-seq data

to the GM12878 regulatory segmentation in order to manually assign labels by their

association with regulatory segments, ChIP-seq signal, and gene models. To add the

Ensembl Regulatory Segmentation to a hub containing an un-annotated segmentation, in the

UCSC browser select “My Data” > “Track Hubs.” Under “Public Hubs”, connect the “Ensembl

Regulatory Build.” After loading the hub, open the genome browser to the hg38 assembly and

the regulatory track hub will appear in the window. To visualize only the GM12878

segmentation, right click on the segmentation in the browser window and click “Configure Cell

Type Activity.” Select only the GM12878 track and submit. Use the “zoom in” tool on the

Bright Red

Light Red

Orange

Gold

Yellow

Predicted promoters

Predicted promoters
flanking regions

Predicted enhancers

Unannotated TF
binding sites

Blue

CTCF binding sites

Unannotated open
chromatin regions

Ensembl Regulatory
Build Functional
Classifications

Light Grey

Cell type specific
inactive region

63

browser for a closer view of the segments. Reorder the segmentation and signal tracks in the

browser to facilitate visual comparison by clicking on the left-hand side of the track and

dragging up or down to a new position. Adjust the configuration settings for each track by right

clicking and selecting “Configure” to manipulate density of the display, axis display height, and

color display. These settings will also display subsets of the regulatory segmentation. For

example, a summary track from the regulatory segmentation can be included that identifies

transcription factor binding sites from all cell types.

 In figure XX.X, the CDKN1A gene locus was selected for visual comparison of the

DOHH2 segmentation and the GM12878 published regulatory segmentation. This comparison

included the ChIP-seq signal tracks, which may provide additional information about genomic

features captured by segments and labels. The CDKN1A gene codes for a cyclin-dependent

kinase inhibitor that is upregulated in multiple myeloma and is a potential therapeutic

target.71,72 Specific genes or genomic regions can be targeted for comparison based on cell

type and biological process of interest to provide new insights into gene regulation.

Another strategy is to determine the similarity of intervals associated with a numbered label in

a new segmentation to regions with an annotated label from a published segmentation. This

type of analysis can be performed using bioinformatics tools to determine which regulatory

genomic regions are enriched in the un-annotated segmentation labels, as illustrated below.

This will help to assign

biologically meaningful labels to

new segmentations.

This analysis can be performed

entirely from the command line

Genomic locus

Segway labels

Regulatory
Segmentation
Labels

Overlapping
genomic
intervals

Predicted
enhancer Unannotated TF

binding site

Calculate % enrichment of
regulatory elements per
label of un-annotated
segmentation

Label 0

Label 1

Label 0
Label 1

P
ro

m
o te

r

P
ro

m
o
t e

r

F
la

n
ki
n
g

C
T
C

F

O
p
en

c
h
ro

m
a
tin

E
n
h
a
nc

e r

T
ra

n
s
cr

ip
ti
o
n

f a
ct
o
r

I n
a
ct

iv
e

re
g
io
n
s

64

or it may be performed using the R programming language in Rstudio. Scripts to perform the

analyses are available (wwww.xxxx.com). In order to perform either analysis, the Ensembl

Regulatory Segmentation must be downloaded and converted to bed file format. Navigate to

segway.hoffmanlab.org and click on the link “Ensembl Regulatory Build for GRCh38 (hg38).”

Select “segmentations/” and in the files section of the new page copy the link location for the

GM12878. Use the “wget” command to download the bigBed file for this cell line. Install

“bigBedToBed (http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/bigBedToBed) and

convert the published segmentation file in bigBed file format to bed file format using the

command bigBedToBed GM12878.bb GM12878.regulatory.bed.

 The first bioinformatics approach uses the bedtools intersect command, which will

generate a new bed file reporting the overlapping genomic regions between the intersected

bed files.69 Using the script bed_enrichment.sh, the intersection bed file can be filtered to

calculate a percent enrichment for the number of times a regulatory element overlaps a

segment in a specific label.

The second bioinformatics approach uses packages available through RStudio

(download here: https://www.rstudio.com). In addition to calculating enrichment of regulatory

elements within labels, this approach facilitates more robust analysis and visualization of the

segmentations (e.g, statistics for relationships between intervals, easy-to-use plotting

functions).

Functional profiling of Segway annotation with gProfiler

In this section we show how Segway annotations can be used to identify the biological

processes that are specific to the cell type of interest. This section of the protocol involves

installing libraries that are not required by neither Segway nor Segtools, therefore, we

estimate that it is beyond the scope of this manuscript to have as detailed instruction as in the

http://segway.hoffmanlab.org/
http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/bigBedToBed
https://www.rstudio.com/

65

main text. Instead, we focus on explaining the main concepts, provide the scripts and the

instructions to create a virtual environment to reproduce the analysis.

The approach described here consist of defining a list of DOHH2 specific genes and use it as

an input to the gProfiler tool.

To define a list of DOHH2 promoter region, first identify the segment label that is the most

enriched at promoter regions using the figure generated previously. Specifically, search in the

the Figure 7 generated in step 14 for the label with the highest theoretical signals from the

H3K4me3 track which is known as a mark of active promoter [PMID:15123803]. For DOHH2

the label 8 seems the most relevant. You can confirm this hypothesis by looking at the most

frequent location of this label in the Figure 9 generated in step 17 that shows that label 8 is

enriched at gene starts.

To obtain a list of gene ids expressed in DOHH2, get the coordinates of the segments with the

TSS label and intersect it with gencode gene annotations. Run:

segment_to_gencode_gene_list.py segway.bed.gz gencode.v25.annotation.gtf.gz

–label 8 –output DOHH2.genes.csv

[MMM-source]

To identify the biological processed specific to the DOHH2 cell lines, the list of genes obtained

above need to be filtered for relevant genes. It is at user’s discretion to determine what

relevant genes are. Here we illustrate how to achieve this by subtracting to the DOHH2

genes, the genes obtained from running the steps 1 to 17 of this protocol on the H1 Human

embryonic stem cells (H1-hESc) and GM12878 cells from ENCODE, with the same histone

marks (Table 2).

After obtaining the list H1-hESc and GM12878 expressed genes by following the instructions

66

in this section, subtract these genes to the DOHH2 genes and run gProfiler:

subtract_genes_and_run_gprofiler.py DOHH2.genes.csv H1hESC.genes.csv –

output DOHH2-H1hESC.enrichment.tsv

subtract_genes_and_run_gprofiler.py DOHH2.genes.csv GM12878.genes.csv –

output DOHH2-GM12878.enrichment.tsv

Interpretation of the enrichment analysis

DOHH2 is an EBV-negative non-Hodgekin’s B-cell lymphoma cell line [PMID:1849602]. To

identify epigenomic signatures of lymphoma that do not exist in the human embryonic stem

cell (H1-hESC) or the EBV-positive lymphoblastoid cell line GM12878, we identified

unsupervised epigenomic signatures of each cell type using H3K27ac, H3K4me3, H3K27me1,

and CTCF ChIP-seq data and Segway.

Segway identified 2966 promoters in DOHH2 that did not exist in H1-hESC. Gene ontology

terms such as immune system process, leukocyte activation, immune effector process,

adaptive immune response, and other immune related pathways had a significant enrichment

in DOHH2-specific promoters (Fisher’s exact test FDR < 0.01). This is in line with the nature

of the cell of origin for non-Hodgekin’s lymphomas [PMID:1849602].

Segway also identified 3292 promoters identified only in the EBV-negative DOHH2 but not in

the EBV-positive lymphoblastoid cell line GM12878. Gene ontology terms such as cellular

metabolic process and cellular biosynthetic processes had significant enrichment in DOHH2-

specific promoters. This agrees with previous evidence of metabolic shift and hypoxic stress

in non-Hodgkin’s lymphoma [PMID:25158954,PMID:PMC4591764].

67

68

References

1. Hoffman, M. M. et al. Unsupervised pattern discovery in human chromatin

structurethrough genomic segmentation. Nat. Methods 9, 473–476 (2012).

2. Hoffman, M. M. et al. Integrative annotation of chromatin elements from ENCODEdata.

Nucleic Acids Res. 41, 827–841 (2013).

3. Song, L. & Crawford, G. E. DNase-seq: a high-resolution technique for mapping

activegene regulatory elements across the genome from mammaliancells. Cold Spring

Harb. Protoc. 2010, db.prot5384 (2010).

4. Dorschner, M. O. et al. High-throughput localization of functional elements byquantitative

chromatin profiling. Nat. Methods 1, 219–225 (2004).

5. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J.

Transposition of native chromatin for fast and sensitiveepigenomic profiling of open

chromatin, DNA-binding proteinsand nucleosome position. Nat. Methods 10, 1213–1218

(2013).

6. Barski, A. et al. High-resolution profiling of histone methylations in the humangenome.

Cell 129, 823–837 (2007).

7. Zhang, Y. et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137

(2008).

8. Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S. Identifying ChIP-seq enrichment using

MACS. Nat. Protoc. (2012).

9. Rozowsky, J. et al. PeakSeq enables systematic scoring of ChIP-seq experiments

69

relative to controls. Nat. Biotechnol. 27, 66–75 (2009).

10. ENCODE Project Consortium et al. Identification and analysis of functional elements in

1% of thehuman genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

11. Day, N., Hemmaplardh, A., Thurman, R. E., Stamatoyannopoulos, J. A. & Noble, W. S.

Unsupervised segmentation of continuous genomic data. Bioinformatics 23, 1424–1426

(2007).

12. Thurman, R. E., Day, N., Noble, W. S. & Stamatoyannopoulos, J. A. Identification of

higher-order functional domains in the human ENCODE regions. Genome Res. 17,

917–927 (2007).

13. Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery

andcharacterization. Nat. Methods 9, 215–216 (2012).

14. Lystig, T. C. & Hughes, J. P. Exact computation of the observed information matrix for

hiddenmarkov models. J. Comput. Graph. Stat. 11, 678–689 (2002).

15. Schliep, A., Schönhuth, A. & Steinhoff, C. Using hidden Markov models to analyze gene

expression timecourse data. Bioinformatics 19 Suppl 1, i255–63 (2003).

16. Jiang, K., Thorsen, O., Peters, A., Smith, B. & Sosa, C. P. An Efficient Parallel

Implementation of the hidden Markov methodsfor genomic sequence-search on a

massively parallel system. IEEE Trans. Parallel Distrib. Syst. 19, 15–23 (2008).

17. Sohn, K.-A. et al. hiHMM: Bayesian non-parametric joint inference of chromatinstate

maps. Bioinformatics 31, 2066–2074 (2015).

18. Mammana, A. & Chung, H.-R. Chromatin segmentation based on a probabilistic model

for readcounts explains a large portion of the epigenome. Genome Biol. 16, 151 (2015).

70

19. Rhee, H. S. & Pugh, B. F. Comprehensive genome-wide protein-DNA interactions

detected at single-nucleotide resolution. Cell 147, 1408–1419 (2011).

20. He, Q., Johnston, J. & Zeitlinger, J. ChIP-nexus enables improved detection of in vivo

transcription factor binding footprints. Nat. Biotechnol. 33, 395–401 (2015).

21. Chen, X., Hoffman, M. M., Bilmes, J. A., Hesselberth, J. R. & Noble, W. S. A dynamic

Bayesian network for identifying protein-bindingfootprints from single molecule-based

sequencing data. Bioinformatics 26, i334–i342 (2010).

22. Chan, R. C. W. et al. Segway 2.0: Gaussian mixture models and minibatch training.

Bioinformatics 1–3 (2017) doi:10.1093/bioinformatics/btx603.

23. Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with ChromHMM.

Nat. Protoc. 12, 2478–2492 (2017).

24. Song, J. & Chen, K. C. Spectacle: Fast chromatin state annotation using spectral

learning. Genome Biol. 16, 33 (2015).

25. Libbrecht, M. W. et al. A unified encyclopedia of human functional DNA elements through

fully automated annotation of 164 human cell types. Genome Biol. 20, 1–14 (2019).

26. UCSC Genome Browser: BedGraph Track Format.

27. Hoffman, M. M., Buske, O. J. & Noble, W. S. The Genomedata format for storing large-

scale functional genomics data. Bioinformatics 26, 1458–1459 (2010).

28. UCSC Genome Bioinformatics: FAQ.

29. Kluin-Nelemans, H. C. et al. A new non-Hodgkin’s B-cell line (DoHH2) with a

chromosomaltranslocation t(14;18)(q32;q21). Leukemia 5, 221–224 (1991).

71

30. Karimzadeh, M., Ernst, C., Kundaje, A. & Hoffman, M. M. Umap and Bismap: quantifying

genome and methylome mappability.

31. Hoffman, M. M., Buske, O. J. & Noble, W. S. The Genomedata format for storing large-

scale functionalgenomics data. Bioinformatics 26, 1458–1459 (2010).

32. Zerbino, D. R., Wilder, S. P., Johnson, N., Juettemann, T. & Flicek, P. R. The ensembl

regulatory build. Genome Biol. 16, 56 (2015).

33. Yates, A. et al. Ensembl 2016. Nucleic Acids Res. 44, D710–D716 (2016).

34. Kent, W. J. et al. The Human Genome Browser at UCSC. Genome Res. 12, 996–1006

(2002).

35. Bilmes, J. & Zweig, G. The Graphical Models Toolkit: An open source softwaresystem for

speech and time-series processing. in IEEE International Conference on Acoustics

Speech andSignal Processing IV–3916–3919.

36. Chen, X., Hoffman, M. M., Bilmes, J. A., Hesselberth, J. R. & Noble, W. S. A dynamic

Bayesian network for identifying protein-binding footprints from single molecule-based

sequencing data. Bioinformatics 26, i334-42 (2010).

37. Oracle Grid Engine.

38. Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via

the EM algorithm. J. R. Stat. Soc. Ser. B Stat. Methodol. 39, 1–38 (1977).

39. Buske, O. J., Hoffman, M. M., Ponts, N., LeRoch, K. G. & Noble, W. S. Exploratory

analysis of genomic segmentations with Segtools. BMC Bioinformatics 12, 415 (2011).

40. Harrow, J. et al. GENCODE: the reference human genome annotation for theENCODE

72

Project. Genome Res. 22, 1760–1774 (2012).

41. Raney, B. J. et al. Track data hubs enable visualization of user-definedgenome-wide

annotations on the UCSC Genome Browser. Bioinformatics 30, 1003–1005 (2014).

42. AGP Specification 2.0.

43. Kent, W. J., Zweig, A. S., Barber, G., Hinrichs, A. S. & Karolchik, D. BigWig and BigBed:

Enabling browsing of large distributed datasets. Bioinformatics 26, 2204–2207 (2010).

44. Grüning, B. et al. Bioconda: A sustainable and comprehensive software distribution for

the life sciences. bioRxiv 207092 (2017) doi:10.1101/207092.

45. Marinov, G. K., Kundaje, A., Park, P. J. & Wold, B. J. Large-Scale Quality Analysis of

Published ChIP-seq Data. G3 Genes|Genomes|Genetics 4, 209–223 (2014).

46. Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE andmodENCODE

consortia. Genome Res. 22, 1813–1831 (2012).

47. Kharchenko, P. V, Tolstorukov, M. Y. & Park, P. J. Design and analysis of ChIP-seq

experiments for DNA-bindingproteins. Nat. Biotechnol. 26, 1351–1359 (2008).

48. Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast

processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).

49. Kidder, B. L., Hu, G. & Zhao, K. ChIP-Seq: technical considerations for obtaining high-

qualitydata. Nat. Immunol. 12, 918–922 (2011).

50. Andrews, S. FastQC: A quality control tool for high throughput sequencedata. (2010).

51. Carroll, T. S., Liang, Z., Salama, R., Stark, R. & de Santiago, I. Impact of artifact removal

on ChIP quality metrics in ChIP-seq and ChIP-exo data. Front. Genet. 5, (2014).

73

52. Carroll, T. S. & Stark, R. Assessing ChIP-seq sample quality with ChIPQC. (2016).

53. Mendoza-Parra, M.-A., Van Gool, W., MohamedSaleem, M. A., Ceschin, D. G. &

Gronemeyer, H. A quality control system for profiles obtained by ChIPsequencing.

Nucleic Acids Res. 41, e196 (2013).

54. Stark, R. & Hadfield, J. Characterization of DNA-Protein Interactions: Design andAnalysis

of ChIP-Seq Experiments. in Field Guidelines for Genetic Experimental Designs inHigh-

Throughput Sequencing (eds. Aransay, M. A. & Lav\’\in Trueba, L. J.) 223–260 (Springer

International Publishing, 2016).

55. Bailey, T. et al. Practical guidelines for the comprehensive analysis ofChIP-seq data.

PLOS Comput. Biol. 9, e1003326 (2013).

56. Ho, J. W. K. et al. ChIP-chip versus ChIP-seq: lessons for experimental designand data

analysis. BMC Genomics 12, 134 (2011).

57. Diaz, A., Nellore, A. & Song, J. S. CHANCE: comprehensive software for quality control

andvalidation of ChIP-seq data. Genome Biol. 13, R98 (2012).

58. R Core Team. R: A Language and Environment for Statistical Computing. (2016).

59. Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat.

Methods 12, 115–121 (2015).

60. Daley, T. & Smith, A. D. Predicting the molecular complexity of sequencing libraries. Nat.

Methods 10, 325–327 (2013).

61. Daley, T. & Smith, A. D. Modeling genome coverage in single-cell sequencing.

Bioinformatics 30, 3159–3165 (2014).

74

62. Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput

experiments. Ann. Appl. Stat. 5, 1752–1779 (2011).

63. Mendoza-Parra, M. A., Saleem, M.-A. M., Blum, M., Cholley, P.-E. & Gronemeyer, H.

NGS-QC Generator: A Quality Control System for ChIP-Seq andRelated Deep

Sequencing-Generated Datasets. in Statistical Genomics: Methods and Protocols (eds.

Mathé, E. & Davis, S.) vol. 1418 243–265 (Springer New York, 2016).

64. Mendoza-Parra, M.-A. et al. Antibody performance in ChIP-sequencing assays: From

qualityscores of public data sets to quantitative certification. F1000Res. 5, 54 (2016).

65. Afgan, E. et al. The Galaxy platform for accessible, reproducible andcollaborative

biomedical analyses: 2016 update. Nucleic Acids Res. (2016).

66. Troger, P., Peter, T., Hrabri, R., Andreas, H. & Piotr, D. Standardization of an API for

Distributed Resource ManagementSystems. in Seventh IEEE International Symposium

on Cluster Computing andthe Grid (CCGrid ’07) (2007).

67. Gentzsch, W. Sun Grid Engine: towards creating a compute power grid. in Proceedings

First IEEE/ACM International Symposium on ClusterComputing and the Grid.

68. Thain, D., Douglas, T., Todd, T. & Miron, L. Distributed computing in practice: the Condor

experience. Concurr. Comput. 17, 323–356 (2005).

69. Henderson, R. L. Job scheduling under the Portable Batch System. in Lecture Notes in

Computer Science 279–294 (1995).

70. Zhou, S., Songnian, Z., Xiaohu, Z., Jingwen, W. & Pierre, D. Utopia: A load sharing

facility for large, heterogeneousdistributed computer systems. Softw. Pr. Exp. 23, 1305–

1336 (1993).

75

71. Zhan, F. et al. Global gene expression profiling of multiple myeloma, monoclonal

gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood

99, 1745–1757 (2002).

72. Han, S. S. et al. CDKN1A and FANCD2 are potential oncotargets in Burkitt lymphoma

and multiple myeloma. Exp. Hematol. Oncol. 4, 1–10 (2015).

76

Tables

Table 1 | Troubleshooting Table

Step Problem Possible Reason Solution

8 Segway produces
identical results each
time it is run

Accidentally have the
random seed for
Segway set

Remove the Segway
random seed with the
command unset
SEGWAY_RAND_SEED

8 Segway produces
different results each
time it is run

No random seed has
been set or not
enough instances
have been run

If you’re attempting to
reproduce results
consistently, consider
using a random seed
as described in Step
8. If you’re not using
a seed but getting
significantly different
results every time
Segway is run,
increasing your --
num-instances will
allow Segway to
create a more
consistent trained
model since it gains a
larger trained sample
size

12 Need to recover from
a crashed Segway
process

This could be a
cluster issue or
configuration issue.
Check the error log
output by Segway for
the reason your
training/identify run
crashed for details

To recover your
Segway run, rename
your old (train or
identify) results
directory to a new
name which Segway
can use to recover
from. Specify the new
directory name with
the --recover
option. Recovery only
works with identical

77

parameters

12 Not enough disk
space or temporary
directory issues while
or after running
Segway

Segway creates
temporary
observation files as
part of its process.

Set the TMPDIR

environment variable
to a directory where
you have write
access and sufficient
disk space

14 Segtools does not
produce PNG images

To create PNG
images, R requires
an X11 display which
will not be present on
a headless node

Copy the necessary
files to a machine
that has Segtools and
an X11 display
available and run
Segtools there.

Alternatively Install
the R package, Cairo,
on your machine.
This may require a
number of additional
dependencies to be
installed

24 Track data from the
uploaded Track hub
is not displaying
correctly on the
UCSC Genome
Browser

The server hosting
the track data does
not support byte
serving or does not
advertise it with an
“Accept-Ranges”
HTTP response
header

Contact the hosting
administrator to
enable byte serving
for the track hub track
datasets or find an
alternative web host
that supports byte
serving

Box 1 I have Python 2.7 but
my system reports
that pip is not
installed

Pip does not
automatically come
bundled with some
distributions of
Python 2.7, or older
versions of Python

If possible, ask your
administrator to install
the necessary python
package containing
pip. If running Python
2.7.9 or later, it is
possible to install pip
through the
ensurepip module
with ‘python -m
ensurepip --
upgrade’. For all

other cases refer to
the pip

78

documentation

Box 1 There is a Unicode-
related error when
attempting to install
numpy with pip

Older versions of pip
cannot install numpy
correctly due to a
unicode related bug

Upgrade your pip
version using ‘pip
install --upgrade
pip’

Box 1 The computer to run
Segway on doesn’t
have an internet
connection

Some cluster
systems have strict
policies regarding
internet connectivity

On a machine with an
internet connection
download Segway
and all dependencies
without installation by
executing ‘pip
install --
download
segway_packages
segway’. Copy the
segway_packages

directory to your
target machine
without an internet
connection. To install
Segway from the
directory of python
packages, execute:
‘pip install --no-
index --find-
links
segway_packages
segway’

Box 2 MACS2 produces a
segfault error, for
example, after
attempting to ‘Call
peaks for each
chromosome’

MACS2 will not
create the necessary
output directories for
you

Create the directory
manually using
‘mkdir’ and run your

MACS2 command
again

Box 2 SPP installation fails
with the error:
‘configure: error:
cannot find Boost
headers version >=
1.41.0’

SPP is unable to find
your Boost C++
installation

Ensure that you have
properly set your
BOOST_ROOT

environment variable
to include your Boost
C++ installation. For
example, if your
Boost installation is
located in directory

79

sampledir, execute:

‘export
BOOST_ROOT=sample
dir’.

Box 4 ChIPQCreport

reports X11 errors
To create images,
ChIPQCreport

requires an X11
display which will not
be present on a
headless node

Copy the necessary
files to a machine
that has Segtools and
an X11 display
available and run
ChIPQCreport there.

Alternatively, on a
headless node install
the R package, Cairo,
on your machine.
This may require a
number of additional
dependencies to be
installed. Place the
necessary commands
in a R script file, x.R,

and run it via xvfb-
run –a -s "-
screen 0
1600x1200x24+32"
Rscript x.R

It may be necessary
to also set
options(bitmapTyp
e='cairo') in your

R script file

80

Table 2 | Input signal ENCODE accession IDs

Figure Legends

Figure 1: Segway workflow for producing and analysing annotations.

Figure 2: Sample output of “cat /proc/cpuinfo” on a Linux operating system. This particular CPU

has two physical cores and hyperthreading (ht), marked in bold above. Hyperthreading allows

software to treat one physical core as two effective cores for the operating system. As a result,

this machine has four effective cores, marked in bold above.

Figure 3: Sample of the expected output from Segway training. The first lines are windows

saved for consideration while training the Segway model. The last lines are the EM training

(EMT) jobs submitted to a cluster system. Segway determines individual EMT job names using

numbers of training instance, EMT round, and window.

Figure 4: Sample of expected output from the Segway identify task. The first lines are indexed

genomic windows saved for subsequent annotation. The last lines are Viterbi jobs to run on a

Target DOHH2 H1-hESc GM12878

H3K4me1 ENCFF509XSM ENCFF591KWL ENCFF831ZHL

H3K4me3 ENCFF745GML ENCFF372YWG ENCFF776DPQ

H3K27ac ENCFF890NAY ENCFF423TVA ENCFF340JIF

H3K27me3 ENCFF592CSV ENCFF043JFV ENCFF313LYI

CTCF ENCFF884IIL ENCFF520THR ENCFF279CYY

81

cluster system. Segway numbers the Viterbi job names based on the previously indexed

windows.

Figure 5: Sample of the resulting segmentation produced by Segway. After a BED file header

line, each line contains information on the chromosome, region, and label assigned to each

region.

Figure 6: Gaussian emission parameters learned by training a 10-label model on 5-signal

dataset.

Figure 7: Distribution of the segment sizes for each label shown as a violin plot.

Figure 8: Segment counts and genome coverage per label. In blue: the fraction of segments for

each label. In red: the fraction of the genome covered for each label.

Figure 9: Segment labels’ enrichment relative to an idealized gene model derived from

GENCODE 25. Color indicates enrichment (red) or depletion (blue).

Figure 10: Example of signal tracks and segmentations on the UCSC Genome Browser for the

CDK1 locus.

82

Figure B3.1. Using the ENCODE DCC search panel to find a particular experiment.

Figure B3.2. Example of the type of results you would get when using ENCODE DCC website

search option.

Figure B3.3. When you select the results of a search on the ENCODE DCC website, the

website will direct you to a webpage on the dataset. In this webpage, you can find detailed

information on aspects of the experiment. You can also download raw or processed data files

(e.g. bigWig or BAM files) directly from this webpage.

Figure B6.1: Classification of regulatory elements for labels in the Ensembl Regulatory Build.

Figure B6.2: Loading cell type specific segmentation into the UCSC Genome Browser session

Figure B6.3: Comparison of Ensemble Regulatory segmentation for GM12878 cell line and

DOHH2 segmentation at the MEN1 locus.

Figure B6.4: Identification of enhancer regions at the MEN1 locus. The regulatory segmentation

also identifies 2 distal enhancer regions at the MEN1 gene. This figure shows segments in

labels 3, 5, and 9 that overlap with 1 of these identified enhancer regions. This type of visual

comparison at other genes may identify one of these labels as highly correlated to overlap

CTCF binding sites or enhancer regions identified by the regulatory segmentation.

83

Figure B6.5: Configuring tracks in track hub for comparison of segmentations.

Figure B6.6: Percentage of regulatory elements from Ensembl segmentation that overlap with

labels 1 and 9 in the DOHH2 segmentation.

