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Biochemical techniques measure many individual properties of chromatin along the 

genome. These properties include DNA accessibility (measured by DNase-seq) and the 

presence of individual transcription factors and histone modifications (measured by 

ChIP-seq). Segway is software that transforms multiple datasets on chromatin properties 

into a single annotation of the genome that a biologist can more easily interpret. This 

protocol describes how to use Segway to annotate the genome, starting with reads from 
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a ChIP-seq experiment. It includes pre-processing of data, training the Segway model, 

annotating the genome, assigning biological meanings to labels, and visualizing the 

annotation in a genome browser. Segway is unique in its use of a modifiable Dynamic 

Bayesian Network which allows it to handle missing data, model length constraints for 

annotated regions, supervise regions, and uses custom graphical models for specific 

project needs. Additionally, Segway defaults to a single base-pair analysis on the 

genome to precisely predict the underlying data distribution and the resulting 

annotation. This protocol takes less than 8 hours including data preparation, 

computation, analysis and visualization. 

INTRODUCTION 

Segway1,2 is software that discovers patterns in genomic signal datasets, and then transforms 

multiple datasets into a simple annotation, labeling the best pattern at every position in the 

genome. Each input data set comes from a biochemical technique that measures some property 

along the genome. Often the property relates to local chromatin biology, such as DNA 

accessibility (measured by DNase-seq3,4 or ATAC-seq5) and the presence of individual 

transcription factors and histone modifications (measured by ChIP-seq6). The input data could, 

however, include any property quantified along the genome in a locus-specific manner. Given 

some genome-aligned datasets, Segway constructs a statistical model of recurring patterns 

across these datasets. In the model, every base has a hidden label that determines which 

pattern is generated at that position. Then, Segway uses that model to annotate the whole 

genome automatically with the best label for every position. Finally, supporting tools visualize 

and summarize the model and annotation to reveal how these patterns associate with known 

and novel biological phenomena. 
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Motivation 

Researchers often have multiple functional genomic datasets that they wish to understand. 

While analysts have a rich choice of peak-calling methods7–9, post hoc comparisons of peak 

calls are unwieldy, at best. At worst, they have decreased power to detect phenomena 

associated with low signal in a single dataset that are revealed as significant when we jointly 

consider multiple datasets. To discover more potentially significant regions, one needs a 

method of integrative analysis across multiple datasets. 

 

To perform integrative analysis on unprecedented quantities of genomic signal data, 

researchers in the ENCODE Pilot Project10 developed the first semi-automated genome 

annotation method, HMMSeg11,12. Semi-automated genome annotation jointly analyzes multiple 

datasets in an unsupervised fashion, allowing the discovery of both known and novel patterns. It 

usually works by creating a segmentation, which is an annotation that has one label at every 

position. Since the ENCODE Pilot, multiple semi-automated genome annotation methods have 

been developed13–18, including HMMSeg’s successor, Segway. Segway is one of the most 

powerful methods for semi-automated genome annotation methods, capable of analyzing 

multiple datasets at 1–base-pair resolution, handling heterogeneous patterns of missing data, 

and modeling signal level directly rather than binarizing. 

 

Signal data usually comes from sequencing assays with a technical resolution of 1 bp, but 

positional stochasticity introduced in the standard ChIP-seq process means a slightly lower 

effective resolution. Thus, we recommend using 10 bp in this protocol. Techniques like ChIP-

exo19 and ChIP-nexus20, however, can deliver effective resolutions of up to 1 bp. Additionally, 

open chromatin assays like DNase (cite both Crawford and Stam method papers) or ATAC-seq 
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(cite Greenleaf paper) can reflect footprints at 1 bp resolution, and other work shows Segway’s 

use to identify these footprints21. 

 

Various combinations of multiple functional genomic datasets have been used to model specific 

genomic features. The Segway method was used to build a model for predicting transcript start 

sites using a mixture of gaussians and virtual evidence. For transcription start sites, input 

datasets of FANTOM5 CAGE, various histone marks, and DNase were selected (cite 

https://www.biorxiv.org/content/10.1101/2020.01.30.926923v1.full.pdf+html). SegRNA (cite 

https://www.biorxiv.org/content/10.1101/2020.07.28.225193v1.full.pdf+html), was developed 

using Segway to characterizing patterns of a cell type’s transcriptome using stranded aware 

model using the available concatenation option. For this model PRO-seq, RNA-seq, and CAGE 

datasets were integrated. When attempting to model patterns of genomic datasets, the 

interpretation and quality of the resulting model depends on the data selection, it’s quality, and 

your model parameters. 

 

Comparison of Segway to similar methods 

Segway in unique in its use of a Dynamic Bayesian Network. This model allows for more 

nuanced tuning of genomic state parameters. The Segway model can transparently predict over 

missing data, have minimum and maximum length state lengths, specify a fixed length on which 

state transitions must occur, have states supervised for a given label, and amongst other 

various features have any other graphical model feature a sufficiently advanced user may 

supply themselves. Segway was found to have similar performance for equivalent data 

resolutions with other genome annotation software22 such as ChromHMM13. Additionally, there 

https://www.biorxiv.org/content/10.1101/2020.01.30.926923v1.full.pdf+html
https://www.biorxiv.org/content/10.1101/2020.07.28.225193v1.full.pdf+html
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have been various comparisons between the Segway model22 and other genome annotation 

software23 that have certain computational24 or domain specialties (cite hierarchical annotation 

software?). 

Limitations of Segway 

To use experimental data with Segway efficiently it must be in a Genomedata file format. 

Segway cannot work directly with aligned reads. It is highly recommended to process 

experimental data into a signal enrichment format. For a given genome annotation project, the 

exact parameters needed require basic experience with machine learning techniques and the 

type of analysis. For example, Segway cannot guess the best number of genomic labels for a 

given set of data. In the resulting annotation, Segway does not assign biological meaning to the 

resulting labels. Segway instead relies on other tools, such as Segtools, to help analyze the 

resulting learned parameters on labels and enrichment analysis for each label on existing 

reference datasets. These tools allow an experienced biologist to assign biological meaning to 

each label. For annotations of gene regulation this process has been fully automated25. 

Experimental design 

In this protocol, we focus on how to use Segway to create a simple regulatory annotation for a 

given cell type by selecting datasets from histone marks and transcription factors. This protocol 

also provides simple data interpretation for the resulting annotation resulting in visualizations, 

gene enrichment, and a list of gene IDs given a gene annotation source. For a regulatory 

annotation, these steps are considered suggestions and the specific analysis will depend on the 

outcome needed for the experimenter and for modeling different sets of genomic features. The 

process has the following major steps (Figure 1): 
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1. Create bedGraph26 signal from aligned reads from ChIP-seq data or download signal 

data from an existing project. 

2. Create Genomedata27 archives containing the signal data. 

3. Train the Segway model. 

4. Use Segway to produce an annotation in browser-extensible data (BED) format28. 

5. View and analyze the resulting annotation. 

In the PROCEDURE section we illustrate how to perform these steps both for any set of data 

and specifically on five ChIP-seq experiments for a human B-cell lymphoma cell line, DOHH229. 

One can apply Segway to any number of signal datasets but we recommend using at least two. 

Obviously, Segway cannot find combinatorial patterns in single datasets, and purpose-made 

tools such as peak callers perform better at this task. Data from open chromatin assays such as 

DNase-seq or ATAC-seq proves particularly informative in Segway analyses, and one can often 

generate in the laboratory more easily. For simplicity we focus on ChIP-seq datasets here. It is 

important to ensure that any ChIP-seq data used is of sufficient quality. Suggestions on 

assessing the quality of these datasets is provided in Box 4 | Quality control for ChIP-seq data. 

 

The set of ChIP-seq targets we use here—H3K4me1, H3K4me3, H3K27ac, H3K27me3, and 

CTCF—prove sufficient to identify the most interesting recurring patterns and provide a useful 

baseline for epigenomic regulatory characterization. If we only had the resources for two ChIP-

seq targets, H3K27ac (an “activating” mark) and H3K27me3 (a “repressive” mark) seem most 

useful. The other three datasets provide the means for identifying particular kinds of epigenomic 

patterns such as insulators (CTCF) or distinguishing between promoters (H3K4me3) and 

enhancers (H3K4me1). With more resources, one might discover a greater diversity of patterns 

adding in H3K36me3 (often found at transcribed gene bodies), or H3K9me3 (constitutive 

heterochromatin). With this protocol, adding ChIP-seq data for other transcription factors is 
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unlikely to contribute much to results, although an annotation trained only with transcription 

factor data might prove interesting. 

 

The ChIP-seq targets for this protocol are filtered by a multi-read mappability score. The Umap30 

project provides lists of uniquely mappable regions for various assemblies and different genomic 

dataset read lengths. The files from the datasets contain a mappability score which is the 

probability that a randomly selected read of a fixed length in a given region is uniquely 

mappable. Smaller scores indicate less confidence about the observed ChIP-seq signal and are 

removed from the analysis. 

 

In order to efficiently store and improve speed of analysis, the datasets for these targets are 

stored in a Genomedata31 archive. These archives are designed for dense genomic signal data 

and allow for efficient random access. Genomedata archives also provide information on where 

data is effectively present using a reference sequence or as used in this protocol, contig (cite?) 

locations using AGP (cite) files. In order to map chromosome identifiers used by NCBI for use in 

visualization in the UCSC Genome Brower, an assembly report (cite?) provided by NCBI is used 

for translational purposes. 

 

To further reduce noise and unnecessary computation we can remove problematic regions from 

the hg38 reference genome. A blacklist by ENCODE and a list of hard-masked cognates and 

pseudoautosomal regions provided by the Genome Reference Consortium (cite) are excluded 

from model training and from the resulting annotation. Functional genomic experiments often 

produce artifact signal in certain regions of the genome. If there is a curated list of these 

blacklisted regions for the genome and assembly you are using in your annotation, we 
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recommend excluding these regions from your analysis. Additionally, the masked regions have 

unmasked exact sequence duplicates elsewhere in the genome. Data will not align to the 

masked regions and may be removed from the analysis. For more details regarding the masked 

regions, a document is available online 

(http://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.28_GRCh38.p13/G

RCh38_major_release_seqs_for_alignment_pipelines/README_analysis_sets.txt). 

 

The training process automatically discovers recurring patterns in the signal data you supplied. 

Training relies on an expectation-maximization38 (EM) process that seeks a local maximum 

likelihood. The likelihood is the probability of generating the given data from the model and its 

learned parameters. Segway can optimize from multiple sets of initial values simultaneously. 

Each simultaneous training instance results in locally optimized parameters and Segway picks 

the winner with the best likelihood. 

 

For increased computational speed, we can train on only a fraction of the genome. For this 

experiment, the minibatch feature is employed specifying which fraction of your data you wish to 

use. The minibatch feature uses a different randomly selected part of the genome in each 

training round. In Segway we set the number of training rounds with the --max-train-rounds. 

In most cases, the patterns found after five rounds are quite similar to those after 100. To 

increase the speed of this experiment, we will set the maximum number of rounds to 10. Here, 

we can also speed up training by reducing the resolution of the signal data with the --

resolution option and it is increased from a default resolution of 1 base pair to 10. 

 

http://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.28_GRCh38.p13/GRCh38_major_release_seqs_for_alignment_pipelines/README_analysis_sets.txt
http://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.28_GRCh38.p13/GRCh38_major_release_seqs_for_alignment_pipelines/README_analysis_sets.txt


   
 

12 

To aid the experimenter in understanding their segmentation results, Segtools39 

(segtools.hoffmanlab.org) is a collection of command-line tools that enables exploratory data 

analysis of genome segmentations, such as the output of Segway. Each tool provides distinct 

information such as the distribution of segment lengths. Existing standard annotations of gene 

elements such as those provided by GENCODE can be used to calculate enrichment for a given 

labels and give us a list of gene IDs for labels of interest. Combining Segtools plots and analysis 

enables you to assign a biological meaning to each annotation label. 

 

To visualize genomic regions of interest, The UCSC Genome Browser can load signal tracks 

and segmentations. To visualize all used and created datasets, a track hub41 is created —a 

collection of genome annotation files on a web server. This allows for example to visualize, 

compare and functionally annotate Segway annotations (Box 6). 

Existing Segway annotations 

Segway has already produced a number of useful segmentations that are freely available for 

downloading or viewing in a genome browser. Several of these are available from the Segway 

website (segway.hoffmanlab.org). The Ensembl Regulatory Build32 has Segway annotations of 

chromatin state across 74 cell types. You can view the Regulatory build segmentations both in 

Ensembl33 and in the UCSC Genome Browser34. 

http://segtools.hoffmanlab.org/
http://segway.hoffmanlab.org/
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Adapting Segway to other tasks 

While most published examples of Segway’s use involve semi-automated genome annotation of 

chromatin state, it is highly adaptable. One can perform semi-automated genome annotation on 

any kind of genomic signal data. Since you can also supply an arbitrary Graphical Model 

Toolkit35 (GMTK) dynamic Bayesian network (DBN) model, you can also use Segway as a 

framework for various different inferences on genomic signal data36. 

Primary audience 

This protocol was designed for bioinformaticians and other biologists who wish to produce 

genomic annotations automatically. The signal data can come from public resources, such as 

ENCODE, or from your own experiments. You should have Linux experience. 

 

MATERIALS 

EQUIPMENT AND SOFTWARE 

● Linux server or workstation 

● At least 15 GB of free disk space 

● At least 6 GB of memory 

● Internet connection 

● A Bash shell 

● (Recommended) Debian 8, Red Hat Enterprise Linux 7, or CentOS 7 
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● (Recommended) Cluster system running Grid Engine, SLURM, IBM Platform Load 

Sharing Facility (LSF), Portable Batch System (PBS), or Torque 

 

Required data 

● ChIP-seq read alignments in Binary Alignment/Map (BAM) format (Box 2) or ChIP-seq 

sequence data tracks from a public source such as ENCODE (Box 3). 

PROCEDURE 

Load signal into Genomedata archives • Timing < 2.5 h 

1| Install the prerequisite software in Box 1. 

2| Download assembly golden path files for your genome. To download the human genome 

assembly version GRCh38/hg38, execute: 

wget --recursive --no-directories --no-parent --accept '*chr*.agp.gz' --reject 
'*comp.agp.gz' 
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.28_GRCh38.p13/
GCA_000001405.28_GRCh38.p13_assembly_structure/Primary_Assembly/assembled_chromosom
es/AGP/ 

 

 

⚠ Critical Step 

The genome assembly version used to align all your signal data must match each other and 

the assembly chosen in this step. Always check that assembly versions match and never 

assume. Failing to ensure consistency will yield nonsensical results from Segway, or any 
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other genome analysis software. There is no guarantee that Genomedata will warn of data in 

unexpected positions. 

 

3| Download DOHH2 cell line signal data tracks CTCF, H3K4me1, H3K4me3, H3K27ac, 

H3K27me3 as outlined in Box 3 or generate the signal files from raw reads as outlined in Box 

2. 

 

4| Download the list of uniquely mappable regions from the Umap project for your genome 

and corresponding to the closest read length of your data, (use the smaller read length in case 

of ties). For the DOHH2 cell line signal data from ENCODE with read smallest read length of 36 

base pairs, execute: 

wget https://bismap.hoffmanlab.org/raw/hg38/k36.umap.bedgraph.gz  

 

5|   

Filter the Umap file for uniquely mappable regions with a multi-read mappability score greater or 

equal to 0.75. Execute: 

zcat k36.umap.bedgraph.gz | awk 'BEGIN {FS=OFS="\t"} {if ($4 >= .75) print $1, $2, 

$3}' | bedtools merge > k36_umap_multiread_filtered.bed 
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⚠ Critical Step 

Signal files downloaded from ENCODE (from Box 1), or generated from Box 2 do not 

distinguish true zero-valued regions from unmappable regions. MACS28 does not distinguish 

true zero-values from missing data in its output. Segway attempts to accurately and 

separately model missing data versus zero-valued data. Ideally, your signal files should 

contain missing data when data is actually missing (by omitting the data) and zero-valued 

data when there is a known zero value result. If it is impossible to distinguish between zero-

valued data and missing data, we recommend setting all missing data to zero. Avoid removing 

zero-valued data, if possible. 

 

6| Download the GRCh38 assembly report. Execute:  

wget 
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.28_GRCh38.p13/GC
A_000001405.28_GRCh38.p13_assembly_report.txt 

 

7| Create Genomedata archives containing your reference assembly and signal tracks. 

Specifically, create an individual archive for each individual signal track. To create a 

Genomedata archive with the GRCh38 human assembly from NCBI the signal files from Step 3, 

execute: 

genomedata-load --assembly --sequence 'chr*.agp.gz' –track 
H3K4me1=ENCFF509XSM_DOHH2_H3K4me1.bigWig --maskfile k36_umap_multiread_filtered.bed 
ENCFF509XSM_DOHH2_H3K4me1.genomedata 

 

This will result in a file called ENCFF509XSM_DOHH2_H3K4me1.genomedata containing signal 

from ENCFF509XSM.bigWig masked by regions contained in 

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.28_GRCh38.p13/GCA_000001405.28_GRCh38.p13_assembly_report.txt
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.28_GRCh38.p13/GCA_000001405.28_GRCh38.p13_assembly_report.txt
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k36.umap_multiread_filtered.bed and assembly data from the given AGP files. The --

track option from the previous command allows one to assign a name to a track for a given 

signal file. In this case, it assigns the track name of H3K4me1 to the signal data found in 

ENCFF509XSM.bigWig. If possible, it is recommended that you create your archives 

simultaneously. 

 

8| Create unique named Genomedata archives for the remaining signal files by repeating 

Step 7 for each remaining signal file gathered in Step 3. If you do this with the suggested 

datasets, you will have five new Genomedata directories containing the signal data 

(ENCFF509XSM_DOHH2_H3K4me1.genomedata, ENCFF745GML_DOHH2_H3K4me3.genomedata, 

ENCFF592CSV_DOHH2_H3K27me3.genomedata, ENCFF890NAY_DOHH2_H3K27ac.genomedata, 

and ENCFF884IIL_DOHH2_CTCF.genomedata). 

 

Train Segway model from data • Timing < 30 min 

9| (Optional) Set a random seed. Segway optimizes model parameters from randomly 

selected initial values. Usually it is better to let this random selection work unconstrained, but to 

reproduce the ANTICIPATED RESULTS here exactly, you must ensure the same sequence of 

random numbers. Do this by setting the SEGWAY_RAND_SEED to a positive (32 bit) integer. For 

example, to replicate ANTICIPATED RESULTS, execute: 

export SEGWAY_RAND_SEED=22426492 

? TROUBLESHOOTING 
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10| (Optional) Store the number of effective cores on your machine. This number is the 

product of the number of processors and each processor’s number of Central Processing Unit 

(CPU) cores (Figure 2).  

 

Export an environment variable containing the maximum available number of cores to use for 

other aspects of the protocol, execute: 

export NUM_THREADS=$(getconf _NPROCESSORS_ONLN) 

  

11| (Optional) Limit Segway’s processor usage. To do this, set the 

SEGWAY_NUM_LOCAL_JOBS environment variable to the maximum number of processes you wish 

Segway to use. Smaller values for SEGWAY_NUM_LOCAL_JOBS will result in slower running times 

and therefore the protocol will take longer to perform. This step only applies to users who run 

Segway without a cluster environment such as Grid Engine37, and we recommend using such 

an environment if possible (Box 5).  

On a cluster, use instead the number of slots allocated to your job. Set 

SEGWAY_NUM_LOCAL_JOBS using the value from Step 10 by executing:  

export SEGWAY_NUM_LOCAL_JOBS="$NUM_THREADS" 
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12| (Recommended, Optional) Download a list of masked regions from the Genome 

Reference Consortium (https://www.ncbi.nlm.nih.gov/grc) to exclude from the analysis. To 

download the masked regions into a 0-based BED file format, execute: 

wget –q –O -  

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.28_GRCh38.p13/

GRCh38_major_release_seqs_for_alignment_pipelines/unmasked_cognates_of_masked_CEN_P

AR.txt | tail -n +2 | awk –v OFS='\t' '{ print $2,$3-1,$4 }' > 

GRCh38_masked_cognates.bed 

 

13| (Recommended, Optional) Merge a blacklist for your genome assembly into your 

exclude coordinates from Step 12. To download and merge a blacklist for hg38 provided by 

ENCODE into a single exclude_coords.bed file, execute: 

wget https://www.encodeproject.org/files/ENCFF356LFX/@@download/ENCFF356LFX.bed.gz 

-q -O - | zcat | sort -k 1,1 -k 2,2n GRCh38_masked_cognates.bed - | bedtools merge 

> exclude_coords.bed  

TODO: Add note saying the blacklist is necessary for ANTICIPATED RESULTS? 

 

14| Train a 10-label Segway model using 1% of your genome. Create a 10-label model 

training on 1% of the genome from the archives created from Steps 7 and 8, excluding regions 

from Steps 12 and 13, at 10 base pair resolution, using 10 simultaneous training instances by 

executing: 

segway train --resolution=10 --num-instances=10 --minibatch-fraction=0.01 --num-labels=10 --
max-train-rounds=10 --exclude-coords=exclude_coords.bed ENCFF509XSM_DOHH2_H3K4me1.genomedata 
ENCFF745GML_DOHH2_H3K4me3.genomedata ENCFF592CSV_DOHH2_H3K27me3.genomedata 
ENCFF890NAY_DOHH2_H3K27ac.genomedata ENCFF884IIL_DOHH2_CTCF.genomedata train_results 

 



   
 

20 

Segway prints a log of genomic regions it trains on and individual training jobs run on your 

cluster or in local mode (Figure 3).  

? TROUBLESHOOTING 

Annotate the genome using the trained model • Timing < 1.5 h 

15| Annotate the genome using the trained model from Step 14. The train_results 

directory contains the final model and trained parameters. To annotate the whole genome from 

our previously trained model, excluding regions from Steps 12 and 13, execute: 

segway annotate --exclude-coords="exclude_coords.bed" --
bigBed=annotate_results/segway.layered.bb ENCFF509XSM_DOHH2_H3K4me1.genomedata 
ENCFF745GML_DOHH2_H3K4me3.genomedata ENCFF592CSV_DOHH2_H3K27me3.genomedata 
ENCFF890NAY_DOHH2_H3K27ac.genomedata ENCFF884IIL_DOHH2_CTCF.genomedata 
train_results annotate_results 

 

Segway prints a log of genomic regions it will annotate and individual identification jobs run on 

your cluster or in local mode (Figure 4). 

 

Segway writes its annotation to a BED file inside the “annotate” directory (annotate_results), 

named segway.bed.gz. This is a tab-delimited file describing the chromosome regions and 

their corresponding label number (Figure 5). 

Analyze the annotation using Segtools • Timing < 30 min 

16| Plot the emission parameters learned during the training task performed in the Step 14. 

segtools-gmtk-parameters train_results/params/params.params 
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This creates the gmtk-parameters directory that contains a heatmap 

(gmtk_parameters.stats.png) showing the learned parameters per label-track pairs. You can 

run this command directly after the training task. 

? TROUBLESHOOTING 

 

17| Calculate and plot the length distribution of segments in each label, and the genomic 

fraction covered by each label using segtools-length-distribution: 

segtools-length-distribution annotate_results/segway.bed.gz 

 

This creates the length_distribution directory that contains summary statistics in tab-delimited 

format (length_distribution.tab and segment_sizes.tab) and two plots. The first plot 

(length_distribution.png) shows the distribution of segment lengths for each label. 

The second plot (segment_sizes.png) shows the fraction of total segments for each label and 

the fraction of genomic bases covered by each label. 

18| Calculate the enrichment of each segment label over a gene annotation using 

segtools-aggregation. Download a gene annotation for your given assembly. In this 

example, download the GRCh38/hg38 human gene annotation in Gene Transfer Format (GTF) 

from GENCODE40: 

wget 
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ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_36/gencode.v36.anno

tation.gtf.gz 

 

Calculate and plot the aggregation: 

segtools-aggregation --mode=gene --normalize --outdir aggregate_gene 

annotate_results/segway.bed.gz gencode.v36.annotation.gtf.gz 

 

This command runs segtools-aggregation in “gene” mode and creates two figures showing 

the enrichment of a segmentation over an idealized transcriptional 

(aggregate_gene/feature_aggregation.splicing.png) and translational 

(aggregate_gene/feature_aggregation.translation.png) gene model.  

19 | Create a filtered GENCODE annotation list with only genes 

zcat gencode.v36.annotation.gtf.gz | sed '/\(gene\t\|^#\)/!d' > 

gencode.v36.genes.gtf 

 

20| Create a list of GENCODE genes that overlap with each label from the produced 

annotation in Step 15. 

for label in {0..10}; do zcat annotate_results/segway.bed.gz | awk --assign 

label=$label 'BEGIN{OFS="\t"} { if ($4==label) print $1,$2,$3 }' | bedtools 

intersect -a gencode.v36.genes.gtf -b stdin | sed 's/.*gene_id "\([^"]\+\).*/\1/' | 

uniq > "segway.${label}.gencode.v36.genes.bed" ; done 
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Visualize signal data and segmentation on the UCSC Genome Browser • 

Timing < 2 h 

To visualize our segmentation and signal data, make a track hub and visualize it on the UCSC 

Genome Browser34 

21| Create the directory hierarchy for the track hub: 

mkdir -p trackhub/hg38 

This creates the main directory trackhub that will contain all the information necessary for the 

UCSC Genome Browser to locate your data. The hg38 subdirectory will contain your Umap-

filtered signal tracks and segmentations generated based on the GRCh38/hg38 genome 

assembly. 

22| Create a hub.txt file in the trackhub directory and add the following lines to the 

beginning of the file: 

hub DOHH2_ChIP-seq 

shortLabel DOHH2 ChIP-seq 

longLabel Segway annotation of DOHH2 ChIP-seq data 

genomesFile genomes.txt 

email your.email@example.com 
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This file describes the general properties of your track hub where the first word of each line is 

the name of the property and the rest of the line is the value assigned to it. 

 

23| Create a genomes.txt file in the trackhub directory file describing the genome 

assembly and the path to the track property file trackDb.txt for that genome assembly: 

genome hg38 

trackDb hg38/trackDb.txt 

 

24| Copy the signal files in bigWig format to the trackhub/hg38 directory with the cp 

command: 

cp *.bigWig trackhub/hg38 

 

The command above copies all the files with the extension bigWig  

25| Move the layered segmentation generated in Step 15 to the trackhub/hg38 directory. 

Execute: 

mv annotate_results/segway.layered.bb trackhub/hg38/ 

 

26| Create trackhub/hg38/trackDb.txt which describes how to display the tracks. Set 

the following parameters for an optimal view of segmentation tracks. 
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track DOHH2_Segway 

type bigBed 12 

bigDataUrl segway.layered.bb 

shortLabel DOHH2 segmentation 

longLabel segmentation of DOHH2 cell line from ChIP-seq data 

itemRgb on 

visibility pack 

 

Set the following parameters for the signal tracks. 

track ENCFF509XSM_DOHH2_H3K4me1 

type bigWig 

bigDataUrl ENCFF509XSM_DOHH2_H3K4me1.bigWig 

shortLabel DOHH2 H3K4me1 

longLabel ChIP-seq signal in DOHH2 

visibility full 

maxHeightPixels 100:60:8 

viewLimits 0:100 

 

track ENCFF745GML_DOHH2_H3K4me3 

type bigWig 

bigDataUrl ENCFF745GML_DOHH2_H3K4me3.bigWig 

shortLabel DOHH2 H3K4me3 

longLabel ChIP-seq signal in DOHH2 

visibility full 
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maxHeightPixels 100:60:8 

viewLimits 0:100 

 

track ENCFF592CSV_DOHH2_H3K27me3 

type bigWig 

bigDataUrl ENCFF592CSV_DOHH2_H3K27me3.bigWig 

shortLabel DOHH2 H3K27me3 

longLabel ChIP-seq signal in DOHH2 

visibility full 

maxHeightPixels 100:60:8 

viewLimits 0:100 

 

track ENCFF890NAY_DOHH2_H3K27ac 

type bigWig 

bigDataUrl ENCFF890NAY_DOHH2_H3K27ac.bigWig 

shortLabel DOHH2 H3K27ac 

longLabel ChIP-seq signal in DOHH2 

visibility full 

maxHeightPixels 100:60:8 

viewLimits 0:100 

 

track ENCFF884IIL_DOHH2_CTCF 

type bigWig 

bigDataUrl ENCFF884IIL_DOHH2_CTCF.bigWig 

shortLabel DOHH2 CTCF 
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longLabel ChIP-seq signal in DOHH2 

visibility full 

maxHeightPixels 100:60:8 

viewLimits 0:100 

 

The UCSC Genome Browser provides many other options as described on its website 

(genome.ucsc.edu/goldenpath/help/trackDb/trackDbHub.html#commonSettings). 

 

27| Upload the track hub directory to a public web space. For example, to copy changes to a 

remote server named yourserver with username yourname, execute: 

rsync -a trackhub yourname@yourserver:/your/publicly/available/space 

The -a option specifies rsync’s archive mode, which preserves all file attributes, recursively 

copying files and directories. 

 

28| Visit the UCSC Genome Browser (https://genome.ucsc.edu) and load your track hub. To 

do so, select “My data” > “Track hubs” from the top menu and add the direct link to your 

hub.txt file in the “URL” field. Push the “Add Hub” button. This will allow you to visualize your 

segmentation as well as your signal tracks, if you included them in your track hub.  

? TROUBLESHOOTING 

 

https://genome.ucsc.edu/goldenpath/help/trackDb/trackDbHub.html#commonSettings
https://genome.ucsc.edu/index.html
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? TROUBLESHOOTING 

 Table 1 contains troubleshooting recommendations. 

• Timing 

The entire protocol takes < 8 h, with approximately 3 h of configuration and entering commands 

and approximately 5 h of computation. We took the timings for this protocol from a Grid Engine 

cluster system where we submitted each job to a compute node running at 2.6 GHz with 4 MB of 

cache and 32 effective CPU cores. 

Step 1, installing the prerequisite software: < 30 min 

Steps 2–3, downloading data from ENCODE: < 1.5 h. This step largely depends on the speed of 

the internet connection used to download the datasets. We downloaded the datasets at 3 MB/s–

4 MB/s. 

Steps 4–6, filtering uniquely mappable regions: 10 min 

Step 7–8, creating the Genomedata archives: 20 min 

Steps 9–14, prepare and train Segway with a 10-label model: 30 min 

Step 15, annotate the genome with the trained Segway model: 1.5 h 

Steps 16–20, analyzing the annotation with Segtools: 30 min 

Steps 21–28, create and upload a trackhub of the annotation: 2 h. The timing on these steps 

depends on the speed of the internet connection used to upload the datasets. 

For smaller datasets not in this protocol, such as K562 GRCh37/hg19 with the same ChIP-seq 

targets from ENCODE, the computation time is substantially reduced. The speed of the protocol 
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largely depends on the availability of processors Segway can submit jobs to and the speed of 

processors themselves. Any bottlenecks on a cluster system or running Segway on a limited 

number of processors will substantially increase the protocol length. 

 

ANTICIPATED RESULTS 

Segway produces an annotation for a given cell type. We illustrate the results of Segway’s 

annotation on DOHH2 from Step 15 by exploring the output of Segtools produced in the Steps 

16–20 and visualizing the segmentation on the UCSC Genome Browser using the track hub 

produced in Steps 21–28. 

Exploring the parameters learned during the training task 

The command described in Step 16 creates the gmtk-

parameters/gmtk_parameters.stats.png file showing the Gaussian parameters learned by 

Segway during the training task described in Step 14.  The file contains a heatmap (Figure 6) 

with the data tracks in rows and the labels in columns. For each track-label combination, 

Segway learns a probability distribution over track values given a label. By default, it uses a 

Gaussian, or normal distribution, for this probability distribution. The colors on the heatmap 

represent row-normalized Gaussian means, where dark blue indicates a low mean and dark red 

indicates a high mean. The sizes of the black rectangles represent the variance parameter of 

the Gaussian, where larger rectangles indicate a higher variance. For example, label 1 
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associates with high values for H3K4me3, H3K27ac, and H3K4me1 tracks, shown in red. Low 

values occur for CTCF and H3K27me3, shown in blue. This observation allows us to 

hypothesize that label 1 is associated with active genes’ transcription start sites.  

 

Exploring the segment length distribution 

The command described in Step 17 creates the length_distribution directory. This directory 

contains summary statistics in tab-delimited format (length_distribution.tab and 

segment_sizes.tab). Segtools uses these statistics to generate summary plots. The first plot 

(length_distribution.png) (Figure 7) shows the distribution of segment lengths for each 

label. 

The second plot (segment_sizes.png) (Figure 8) shows the fraction of total segments for each 

label and the fraction of genomic bases covered by each label. Some segments cover very 

large regions. In particular, Label 1 has some segments with extremely large length. Since the 

segmentation included some large assembly gaps, Segway picked the default highest average 

mean label. This is a result of the protocol using a genome sizes file for describing the reference 

genome used in the analysis and not a more precise description of the genome such as an 

Assembly Golden Path42 (AGP) file where such regions would not be considered for training or 

annotation. 
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Exploring the segment enrichment against gene annotation 

The command described in Step 18  generates the file 

aggregate_gene/feature_aggregation.splicing.png, which summarizes the occurrence 

of each segmentation label (y-axis) relative to an idealized transcriptional gene model separated 

into 8 components (x-axis). For example, one can see the enrichment of label 1, in red, over 

components generally found around the 5′ end of a gene (Figure 9). 

Visualize Segway results on a genome browser 

Figure 10 illustrates the track hub generated in Steps 21–28 loaded on the UCSC Genome 

Browser. The first track shows the GENCODE annotation of the CDK1 locus. The subsequent 

tracks display the signal values from the five bigWig files generated in Step 3. Finally, the last 

track is the segmentation generated with Segway. In this example, labels 1 and 2 are present 

around the 5′ end of the CDK1 gene. Labels 5 and 6 cover the middle and end of the gene. 

These observations are consistent with the enrichments shown in Figure 9. 
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Boxes 

Box 1 | Installing Prerequisite Software 

Segway is only supported on Linux. 

 

There are two distinct methods to install Segway on your machine. 

1. Install Segway as an administrator, for all users on the system. This is the easier 

method, if you have the administrator privileges. 

2. Install Segway without any special privileges, for one user. 

 

For either method you need to install: 

- Python (2.7) 

- Hierarchical Data Format 5 (HDF5) (1.8.17) 

- Graphical Models Toolkit (GMTK) (1.4.4) 

- Segway (2.0.2) 

- R (3.3) 

- Segtools (1.14) 

- bedtools (2.26.0) 

- bigWigToBedGraph 

- bedGraphToBigWig (4) 

- bedToBigBed (2.7) 
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- GNU Parallel (20180522) 

Installing Segway as administrator 

1. Install Python (with pip), HDF5, R, and GNU Parallel with your system package 

manager 

 

Ubuntu or Debian 8: 

sudo apt-get install python2.7 libhdf5-serial-dev hdf5-tools r-base 

bedtools python-pip parallel 

 

CentOS 7, Red Hat Enterprise Linux 7, Fedora: 

sudo yum -y install hdf5 hdf5-devel R BEDTools readline-devel python-devel 

parallel 

For Red Hat Systems we recommend using the existing installed version of Python 2.7. 

Upgrading the system Python can break yum. For Fedora 22+ only: replace ‘yum’ with 

‘dnf’. 

 

Install R dependencies: 

From an interactive R environment (with sudo access): 

install.packages(c("latticeExtra", "reshape2"), repos='http://cloud.r-

project.org/') 

http://cloud.r-project.org/
http://cloud.r-project.org/
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All Linux Distributions: 

GMTK 

wget http://melodi.ee.washington.edu/downloads/gmtk/gmtk-1.4.4.tar.gz 

tar xf gmtk-1.4.4.tar.gz 

cd gmtk-1.4.4 

./configure 

make 

make install 

 

Segtools 

sudo pip install segtools 

 

Segway 

On Debian only: 

    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:"/usr/lib/x86_64-linux-

gnu/hdf5/serial" 

    export C_INCLUDE_PATH=$C_INCLUDE_PATH:"/usr/include/hdf5/serial" 

    sudo pip install segway 

http://melodi.ee.washington.edu/downloads/gmtk/gmtk-1.4.4.tar.gz
http://melodi.ee.washington.edu/downloads/gmtk/gmtk-1.4.4.tar.gz
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2. Install UCSC Genome Browser BigWig and BigBed tools43  

The remaining software prerequisites are utilities distributed as standalone binaries. These 

utilities to convert genomic signal and annotation data between different formats. Ensure your 

PATH environment variable contains the location of your downloaded binaries. Download 

remaining utilities with the following commands: 

 

bigWigToBedGraph 

wget http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/bigWigToBedGraph 

chmod +x bigWigToBedGraph 

 

bedGraphToBigWig 

wget http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/bedGraphToBigWig 

chmod +x bedGraphToBigWig 

mv bedGraphToBigWig "${HOME}/.local/bin/" 

 

bedToBigBed 

wget http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/bedToBigBed 

chmod +x bedToBigBed 

http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/bigWigToBedGraph
http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/bigWigToBedGraph
http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/bedToBigBed
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Installing Segway without administrator privileges 

We highly recommend, when possible, getting an administrator to install the necessary 

software. Alternatively, we recommend using Bioconda44 to install all the necessary software 

for this protocol. Bioconda is a suite of software pacakges that specialize in Bioinformatics. To 

use the packages available on Bioconda, the conda package and environment manager must 

be installed. If you have Anaconda (https://anaconda.org/) or Miniconda 

(https://conda.io/miniconda.html) already installed, conda is already installed on your system. 

If you do not have either, we recommend downloading and installing Miniconda. Miniconda 

runs on top of either Python 2 or Python 3. To determine which version of python version your 

system is running, run the command: 

python --version 

If you do not have Python installed, if possible ask your system adminstrator to install it for 

you. After determining which version of Python you have installed, install either a Python 2 or 

a Python 3 based Miniconda. 

Installing Python 2 based Miniconda: 

wget  https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh 

chmod +x Miniconda2-latest-Linux-x86_64.sh 

./Miniconda2-latest-Linux-x86_64.sh 

Installing Python 3 based Miniconda: 

wget  https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh 

chmod +x Miniconda3-latest-Linux-x86_64.sh 

https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh
https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
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./Miniconda3-latest-Linux-x86_64.sh 

To add Bioconda packages for installation with conda, add the Bioconda channel: 

conda config --add channels defaults 

conda config --add channels conda-forge 

conda config --add channels bioconda 

The conda packages "segway" and "segtools" are the only two packages required for this 

protocol. We recommend setting up a new conda environment and installing the packages to 

this environment. To setup an environment named "segway" with the exact packages 

necessary for this protocol run the following command: 

conda create –-name segway segway=2.0.2 segtools=1.1.14 parallel=20180522 

To activate the environment and gain access to the software necessary to the protocol, enter 

the command: 

conda activate segway 

To return to back to your old environment enter the command: 

conda deactivate 

 

If any installation step fails, refer to ? TROUBLESHOOTING. 
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Box 2 | Generate ChIP-seq Signal Files Using MACS2 

Segway takes its input from signal files—normalized representations of ChIP-seq reads within 

a genomic region. You can convert aligned ChIP-seq data in BAM format to signal files in 

bedGraph or bigWig format. For visualization, bigWig is necessary. The bedGraph format 

may also be used in this protocol. 

You should filter your aligned reads and compute predominant fragment lengths for the ChIP-

seq data prior to generating the fold-enrichment signal files using the MACS2 software. We 

compare fragment-lengths to read-lengths in order to provide estimates about the amount of 

background signal in the ChIP-seq data. 

To install the software necessary for generating ChIP-seq signal demonstrated here, in a 

Bioconda environment execute: 

conda install phantompeakqualtools sambamba bedtools macs2 ucsc-bedclip 

ucsc-bedgraphtobigwig 

Estimate predominant fragment length  

The program phantompeakqualtools45–47 (v1.1) will calculate the predominant insert-size (or 

fragment length) based on strand cross-correlation analysis 

Filtering aligned reads to generate a tagAlign file 

The Sambamba48 program is used to process BAM files. If your files are in tagAlign format 

then you do not need to use Sambamba. 

Prior to generating the fragment length estimation, execute the following to filter a ChIP-seq 
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BAM file and generate a tagAlign file for the phantompeakqualtools and MACS2 program. For 

example, to generate a tagAlign file named chip_TA.tagAlign.gz from 

mycellchipseq.bam, execute:  

sambamba view --nthreads "$NUM_THREADS" --filter 'not(unmapped or 
mate_is_unmapped or failed_quality_control or secondary_alignment or 
duplicate) and mapping_quality >=30' –format=bam mycellchipseq.bam | 
bedtools bamtobed -i stdin | awk 'BEGIN{OFS="\t"}{$4="N";$5="1000";print 
$0}' | gzip -c > chip_TA.tagAlign.gz 

 

You are now ready to estimate the predominant fragment lengths using cross-correlation 

analysis. The input file can be in tagAlign or BED format. 

Running phantompeakqualtools 

From the command line, execute the following: 

1. Run the phantompeakqualtools program from the command line in order to use cross-

correlation analysis to estimate the predominant fragment lengths. To use multiple 

threads with phantompeakqualtools, use the -p option. For example, to run 

phantompeakqualtools with $NUM_THREADS threads, execute:  

run_spp.R -c=chip_TA.tagAlign.gz -p="$NUM_THREADS" -filtchr=chrM -
savp=chip_TA.cc.plot.pdf -out=chip_TA.cc.qc 

 

2. Execute the following command to write only the first value for estimated fragment 

length into the output file. This value (in almost all cases) is the best estimate of 

predominant fragment length.  

sed -i -r 's/,[^\t]+//g' chip_TA.cc.qc 

 

The output file chip_TA.cc.qc contains NSC/RSC results in a tab-delimited file of 11 
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columns. The columns are filename, number of reads, estimated fragment length, strand 

cross-correlation at estimated fragment length, read length, strand cross correlation at read 

length, strand shift with minimum cross-correlation, minimum cross-correlation, normalized 

strand cross-correlation coefficient NSC, relative strand cross-correlation coefficient RSC, 

and Quality Tag. 

 

Notably, the estimated fragment length (in column 3) can contain multiple comma-separated 

values. We recommend using the first value, as this value is the best estimate of predominant 

fragment length in almost all cases. 

 

NSC values less than 1.05 and RSC values substantially less than 1 have high background 

signal or low signal to noise ratios, which indicates poor quality data or low abundance of 

DNA-protein binding events46. In our example, the ‘chip_TA.cc.plot.pdf’ output file 

contains the cross-correlation plot.  

Generate fold enrichment coverage tracks using MACS2  

The normalized signal track generation requires the use of MACS2 

(https://github.com/taoliu/MACS/). 

MACS will use as input a tagAlign file and a control ChIP-seq sample tagAlign file. Use the 

same procedure described above to convert your control file into tagAlign format if starting 

with a BAM file. The MACS2 program will ultimately produce a fold-enrichment file in the 

bigWig format. To use MACS2 to produce this output, execute the following from the 

command line:  

https://github.com/taoliu/MACS/
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1. Create the output directory for the MACS2 results: 

mkdir -p peak_output 

2. Using MACS2, generate the narrow peaks and preliminary signal tracks using 

the tagAlign file generated directly from the BAM file. The --gsize parameter passes 

the effective genome size to MACS2. Using bedtools genomecov and a mappability 

track for a read-length of 50, we calculate the effective genome size for hg38 to be 

2.8e9. MACS2 uses the effective genome size to calculate the background Poisson 

λ. You should always use your input ChIP-seq data’s fragment length for MACS2. For 

example, to generate the signal tracks for tagAlign file chip_TA.tagAlign.gz and 

control ChIP-seq sample tagAlign file control_TA.tagAlign.gz with a fragment 

length (specified with --extsize) of 250 and a p-value cutoff (specified with --

pvalue) of 0.01, execute: 

macs2 callpeak --treatment chip_TA.tagAlign.gz --control 
control_TA.tagAlign.gz --format BED --name peak_output/chip_TA --gsize 
2.8e9 --pvalue 1e-2 --nomodel --extsize 250 --keep-dup all --bdg --SPMR --
shift 0 

 

The --keep-dup all option specifies that MACS2 should keep all duplicate tags at the exact 

same location. The --bdg option produces peak_output/chip_TA_treat_pileup.bdg, 

which we use for noise removal. The --shift 0 option specifies that there should be no 

arbitrary shift.  

 

3. Using MACS2, generate the final fold-enrichment signal tracks. To generate the signal 

tracks for our example, execute: 

macs2 bdgcmp --tfile peak_output/chip_TA_treat_pileup.bdg --cfile 
peak_output/chip_TA_control_lambda.bdg --outdir peak_output --ofile 
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chip_TA_FE.bdg --method FE 

 

4. Using bedClip, remove coordinates outside those specified in your chromosome 

sizes file, and generate a sorted bedGraph file. You will need a chromosome size file. 

This is a tab-delimited file with two columns; chromosome name (column 1), and 

chromosome size in base pairs (column 2). To download the chromosome sizes file 

for your genome see the bedClip command line help text. For hg38, a sizes file can be 

downloaded from 

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.chrom.sizes.  For 

example, to remove any coordinates in chip_TA_FE.bdg that are outside of those 

specified in hg38.chrom.sizes, and generate and sort the resulting bedGraph file, 

execute: 

bedClip -truncate peak_output/chip_TA_FE.bdg hg38.chrom.sizes 
peak_output/chip_TA.fc.signal.bedGraph 

sort -k 1,1 -k2,2n chip_TA.fc.signal.bedGraph &> 
chip_TA.fc.signal.sorted.bedGraph 

 

5. (Optional) Using bedGraphToBigWig, convert the resulting bedGraph file to bigWig 

format. Segway can directly use bedGraph files as signal tracks. However, bigWig 

format enables more efficient visualization on the UCSC Genome Browser of large, 

dense, and continuous data. For example, to convert 

chip_TA.fc.signal.sorted.bedGraph to bigWig format: 

bedGraphToBigWig peak_output/chip_TA.fc.signal.sorted.bedGraph 
GRCh38_EBV.chrom.sizes.tsv peak_output/chip_TA.fc.signal.sorted.bigWig 

 

6. (Optional) Remove intermediate files  

rm -f peak_output/chip_TA_peaks.xls 

rm -f peak_output/chip_TA_peaks.narrowPeak  

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.chrom.sizes
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rm -f peak_output/chip_TA_summits.bed 

rm -f peak_output/chip_TA_FE.bdg 

rm -f peak_output/chip_TA.fc.signal.bedGraph 

rm -f peak_output/chip_TA_treat_pileup.bdg  

rm -f peak_output/chip_TA_control_lambda.bdg 

 

For problems encountered in this Box, refer to ? TROUBLESHOOTING 
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Box 3 | Downloading ChIP-seq data from ENCODE 

The ENCODE Project (https://www.encodeproject.org/) provides raw and processed ChIP-seq 

data for transcription factors and histone modifications on its website. Locate data of interest 

through this website’s search or the ENCODE data matrix 

(https://www.encodeproject.org/matrix). The data matrix makes it easy to explore all available 

experiments for your cell type of interest. 

For example, we want to acquire ChIP-seq data for H3K4me1 in the DOHH2 cell type. This 

cell type is derived from the pleural effusion of a B cell lymphoma patient. We will therefore 

use the search box to find it directly. 

 

1. Open https://www.encodeproject.org/ in your browser. 

2. In the search box at the upper right corner of the page, type in “DOHH2 H3K4me1 

ChIP-seq” and press Enter (Figure B3.1). 

2.  

3. Click on any of the results that match your preferences to visit the experiment 

summary page. If you plan to use data from several ChIP-seq experiments, consider 

that different labs may have generated the data. These labs might also use different 

laboratory protocols. You can read these details in the experiment summary page 

(Figure B3.2). 

 

4. In the “File” section, under the “File details” section there are two panels for accessing 

raw and processed data (Figure B3.3). Each panel provides detailed information on 

https://www.encodeproject.org/
https://www.encodeproject.org/matrix/?type=Experiment
https://www.encodeproject.org/
https://www.encodeproject.org/
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each file. The “File type” and “Mapping assembly” columns guide you to the format you 

need for your analysis. If the “Biological replicate” column is empty or “1,2”, this 

indicates replicates are merged. Find the file type and genome assembly you need. 

5. Click the download icon in the “Accession” column in the right of accession numbers to 

download a file immediately. Alternatively, right click on the icon and copy the link 

location to use with "wget" command later. In the example below, we download the 

signal file of H3K4me1 ChIP-seq experiment in DOHH2: 

URL="https://www.encodeproject.org" 

ACCESSION="ENCFF509XSM" 

FORMAT="bigWig" 

CELL="DOHH2" 

MARK="H3K4me1" 

wget "$URL/files/$ACCESSION/@@download/$ACCESSION.$FORMAT" \ 

    -O "${ACCESSION}_${CELL}_${MARK}.$FORMAT" 

 

ENCODE project website has a detailed application program interface (API) documentation 

(https://www.encodeproject.org/help/rest-api/). The ENCODE project API allows you to 

automate your search queries and downloads. The preferred input for Segway is the “fold 

change over control” bigWig signal file, because it is already processed and normalized. It is 

possible to generate the signal file from raw files of any ChIP-seq experiment using MACS2 

(see Box 2). 

 

https://www.encodeproject.org/
https://www.encodeproject.org/help/rest-api/
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For the examples in this manuscript, we download the signal files of DOHH2 ChIP-seq 

datasets for H3K4me1 (ENCFF509XSM), H3K4me3 (ENCFF745GML), H3K27ac 

(ENCFF890NAY), H3K27me3 (ENCFF592CSV) and CTCF (ENCFF884IIL). These bigWig 

files average approximately 1 GiB each in size. To download all of these files, execute the 

following script in a bash terminal: 

URL="https://www.encodeproject.org" 

FORMAT=bigWig 

CELL=DOHH2 

MARKS=(H3K4me1 H3K4me3 H3K27ac H3K27me3 CTCF) 

ACCESSIONS=(ENCFF509XSM ENCFF745GML ENCFF890NAY ENCFF592CSV ENCFF884IIL) 

for i in ${!MARKS[@]} 

do 

    ACCESSION=${ACCESSIONS[$i]} 

    MARK=${MARKS[$i]} 

    wget "$URL/files/$ACCESSION/@@download/$ACCESSION.$FORMAT" \ 

        -O "${ACCESSION}_${CELL}_${MARK}.${FORMAT}" 

done 

https://www.encodeproject.org/
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Box 4 | Quality control for ChIP-seq data 

For Segway to produce high-quality segmentations, input chromatin immunoprecipitation 

sequencing (ChIP-seq) data must have sufficient quality. Quality control methods for ChIP-

seq data can ensure this. 

 

Several technical factors affect the quality of ChIP-seq data.49 Often, most important is the 

specificity of the antibody employed. Also key is using a sufficient number of cells and 

appropriate controls. Fragmentation, library construction, and sequencing protocols used also 

influence data quality.49 Finally, the alignment software used influences signal mapping 

quality.  

This box explains how to compute different quality control metrics using FastQC,50 

ChIPQC,51,52 and NGS-QC.53 We provide general guidelines, which provide a clear means of 

assessing data quality. There are, however, a number of different ways of assessing quality 

and many methods depend greatly upon the particulars of the assessed experiment. There is 

not yet a consensus on a general and optimal means of assessing ChIP-seq data quality and 

we suggest that interested readers consult some of the broad literature on this topic.45,46,51,53–57 

Installation of QC tools and dependencies 

Installing with Bioconda 

In an environment of your choice, install the fastqc, sambamba, and ChIPQC Bioconductor 

packages: 
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conda install fastqc sambamba bioconductor-chipqc 

Installing without Bioconda 

FastQC50: follow instructions at http://www.bioinformatics.babraham.ac.uk/projects/ 

fastqc/INSTALL.txt. 

Sambamba48: follow instructions at http://lomereiter.github.io/sambamba or our instructions in 

Box 2. 

ChIPQC:51,52  

1. Install: R58 3.4.3 

2. Install Bioconductor59 3.6 and ChIPQC version 1.14.0, by executing the following 

within the R environment: 

source("http://bioconductor.org/biocLite.R")biocLite()  # install 

Bioconductor 

biocLite("DiffBind")  # install latest version of dependency 

biocLite("ChIPQC")  # install ChIPQC 

biocLite("TxDb.Hsapiens.UCSC.hg38.knownGene")  # for GRCh38/hg38 

Sequence data quality control with FastQC 

FastQC50 reports on potentially problematic aspects of the sequencing itself. This includes 

base qualities, G+C bias, systematic overrepresentation of sequences, and several other 

metrics. To run FastQC on BAM files, such as the ENCODE CTCF ChIP-seq samples, whose 

signal files were downloaded in Box 3, execute: 

    fastqc ENCFF863PSQ.bam ENCFF092CZO.bam 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/INSTALL.txt
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/INSTALL.txt
http://lomereiter.github.io/sambamba
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One useful metric is library complexity—a measure of the number of distinct molecules in the 

library. Low complexity often results in repeated sequencing of duplicates, yielding little 

information.60 You can estimate library complexity from FastQC’s duplicate sequence plot. 

More detailed analyses can be performed, if necessary, using preseq.61 A large fraction of 

duplicate sequences is often a result of insufficient sequence diversity, which can suggest an 

inherent experimental bottleneck, such as an insufficient number of input cells.55,60  

Additional considerations include checking the quality of read mapping, the proportion of 

reads aligning to a genomic position, the number passing a mapping quality threshold, and 

the abundance of duplicate reads. 

 

Assessing ChIP-seq data quality 

To assess ChIP-seq data quality; you should perform overall assessment of both ChIP-seq 

reads and the effects of random sub-sampling, when possible. You should use frequency of 

reads in peaks (FRiP) with ChIP-seq peak calls, but we do not focus on this approach since 

Segway operates directly upon signal. It is useful to assess the consistency across ChIP-seq 

replicates, such as via an irreproducible discovery rate62. ENCODE conducts this analysis for 

all of its ChIP-seq datasets.46 This is currently non-trivial, however, to use in one’s own 

workflow. 

Testing ChIP-seq quality with ChIPQC 

ChIPQC51,52 is an R58 Bioconductor59 package that evaluates metrics of mapping, filtering, and 

duplication rates, as well as ChIP-seq signal distribution and structure. While ChIPQC usually 

also computes FRiP, from called peaks, here we will run it using only signal data. 
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1. Define or use the previously exported NUM_THREADS environment variable. 

2. Determine the maximum memory for ChIPQC to use in GiB: 

MAX_M_USE=$(($(free -g | head -3 | tail -1 | tr -s ' ' | cut -d ' ' -f 4) - 

1)) 

On a cluster, use instead 1 GiB less than the amount allocated to your job. 

3. Create a sorted, indexed, and duplicate marked BAM file, using Sambamba48. For 

example to do so for the ENCFF863PSQ.bam, run the following: 

a. sambamba sort --memory-limit "${MAX_M_USE}GiB" --nthreads 

"$NUM_THREADS" --compression-level 0 --out "${TMPDIR:-

/tmp}/ENCFF863PSQ.sorted.bam" ENCFF863PSQ.bam 

b. sambamba markdup --nthreads "$NUM_THREADS" --compression-level 

9 --tmpdir="$TMPDIR" "${TMPDIR:-/tmp}/ENCFF863PSQ.sorted.bam" 

/dev/stdout | tee ENCFF863PSQ.sorted.markeddup.bam | sambamba 

index --nthreads "$NUM_THREADS" /dev/stdin 

ENCFF863PSQ.sorted.markeddup.bam.bai 

c. rm -f "${TMPDIR:-/tmp}"/ENCFF863PSQ.sorted.bam* 

4. Create an experiment description file for ChIPQC. This file describes the ChIP-seq 

samples that ChIPQC will analyze. ChIPQC operates on each input file, which might 

be a single technical replicate, with pooled sequencing lanes, or a single biological 

replicate, merged from multiple technical replicates. The content of a single unit of 

quality assessment—a single file—depends upon your experimental setup and 

downstream experimental goals. Each row corresponds to one ChIP-seq file, while 

each column describes the data associated with that file. We highlight a common use-

case; refer to the package documentation for a detailed description of all available 
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fields. You should specify the following columns: SampleID, Tissue, Factor, 

Replicate, bamReads, ControlID, bamControl, and Peaks. These fields act merely 

as annotations of your data and do not alter ChIPQC’s operation, with two exceptions. 

Two fields must contain valid file paths: bamReads, which must contain the full path to 

the above sorted and duplicate marked BAM file of the ChIP-seq experiment. The 

other field, bamControl, must contain the full path to a corresponding set of control 

reads, in a sorted and duplicate marked BAM, such as from an input (antibody-free) 

experiment. In this case, without peak calls, set Peaks to NA. This will cause ChIPQC 

to compute all metrics that do not depend upon a peak set. If you have a peak file, set 

Peaks to the file name and additionally specify a PeakFormat column, if the file is not 

in BED format. Even if you are only analyzing a single replicate, you must still specify 

the Replicate column. You may set it to 1 in this case. 

Name this file QCexperiment.csv and delimit its columns with tabs. For example, a 

single replicate may result in a file like this: 

SampleID        Tissue  Factor  Replicate  bamReads        ControlID       

bamControl      Peaks 

ENCFF863PSQ       DOHH2    CTCF  1  ENCFF863PSQ.sorted.markeddup.bam     

ENCFF631ENA ENCFF631ENA.sorted.markeddup.bam     NA 

3. Execute the following within the R environment: 

library("TxDb.Hsapiens.UCSC.hg38.knownGene") 

library("ChIPQC") 

samples <- read.delim("QCexperiment.csv", stringsAsFactors=FALSE) 
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experiment <- ChIPQC(samples, annotation="hg38") 

Specify the assembly employed via the annotation parameter. We used GRCh38/hg38 

above, but you can also, for example, use GRCh37/hg19 instead via annotation="hg19". 

4. Generate the output report, summary, and plots of interest by executing in the R 

environment: 

# disable faceting when using only a single sample 

facet <- ifelse(nrow(samples) > 1, TRUE, FALSE) 

 

write.table(QCmetrics(experiment), file='QCmetrics.csv') 

 

ChIPQCreport(experiment, facet=facet) 

The ChIPQC documentation contains additional details, including other available plots.52  

 

? TROUBLESHOOTING 

Interpreting ChIPQC results 

Assessing read mapping quality 

Verify that ChIP-seq results have a substantial portion of uniquely mapped reads, without an 

unexpectedly high proportion of reads filtered out due to insufficient quality. Generally, at least 

50% of reads in an experiment should map uniquely, with lower values expected for input 

data, which lacks a targeting antibody. This varies greatly, however, and depends on the 
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species analyzed.55,56 In human and mouse ChIP-seq samples, expect over 70% of reads to 

map uniquely.55,56 You should also assess the duplication rate—a ratio of unique to total 

reads. This varies greatly, but you should expect for it to be much less in control samples and 

it should generally not exceed 50%.52 

Assessing ChIP-seq signal distribution 

You should also assess the read cross-correlation, as a metric of ChIP-seq data quality. The 

ChIPQC cross-correlation plot should have a clear peak at the fragment length in 

successfully-enriched samples.52 The normalized strand cross-correlation coefficient within 

the QC metrics file should be greater than 1.05, while the relative strand cross-correlation 

coefficient should be greater than 0.8.46 Bailey et al.55 describes how to use and interpret this 

metric further (Box 2 of Bailey et al.55). 

 

Additionally, evaluate ChIPQC’s coverage histograms and their standardized standard 

deviation (SSD), normalized to read depth. Expect the coverage histogram to have a non-

negligible “tail” and for SSD values to be greater than 1, generally above 1.5. Expect controls 

to have SSD values of around 1. Control SSDs greater than 1 might indicate aberrant 

enrichment.52  

Subsampling to assess ChIP-seq quality with NGS-QC 

Random sub-sampling on ChIP-seq profiles provides a means of computing quality metrics 

that do not depend upon peak calling. Importantly, such metrics are comparable between 

sharp (transcription factors) and broad (histone modifications) peaks,53 both of which are 

frequently used together by Segway. The Next Generation Sequencing Quality Control 

Generator (NGS-QC)53,63,64 provides these metrics for a wide array of ChIP-seq datasets. It 
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uses measurements of global deviations of random read subsets with respect to the full set of 

aligned reads to assign quality scores.64 NGS-QC randomly subsamples 90%, 70%, and 50% 

of reads and counts reads in subsampled and full datasets in 500–base-pair bins. NGS-QC 

measures the variance from the expectation of the same percentage decrease in read counts. 

It quantifies the proportion of these bins that are below 2.5%, 5%, or 10% of this expected 

fraction, and each threshold forms a component of the quality score. These scores form labels 

for ChIP-seq data quality from A–D, for each threshold. Therefore, the highest rating is “AAA”, 

while the lowest is “DDD”.64 NGS-QC has pre-computed quality metrics for many public 

datasets, including some ENCODE data. Consult these if available. Otherwise, compare your 

data to them, as outlined below. 

 

Use NGS-QC via its Galaxy65 instance, as follows: 

1. Navigate to: http://galaxy.ngs-qc.org/ 

2. Create an account. 

3. Upload BAM files, using FTP. 

a. From the directory containing the BAM files to upload on the command line, run 

ftp galaxy.ngs-qc.org 

b. Login using the previously created credentials. 

c. Execute: 

i. prompt (disables confirmation of each individual upload) 

ii. mput <files> 

iii. exit 

d. Navigate to the Galaxy instance, and select “Get Data” > “Upload file” from the 

left panel. 

http://galaxy.ngs-qc.org/
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e. Select the files uploaded via FTP, using the “Choose FTP file” option. 

4. Access the NGS-QC command under “NGS-QC” > “NGS-QC Generator“. Fill in the 

provided form to assess the uploaded data, following the NGS-QC guidelines 

(http://www.ngs-qc.org/tutorial.php#part2). We recommend selecting three replicates 

of the QC computation, to mitigate against sampling bias. Specify the genome to 

which the uploaded data was aligned, from the available list. At this time, 

GRCh38/hg38 is not available. For the other parameters, use the defaults. 

5. Compare against existing public datasets, selecting the target of the ChIP-seq 

experiment at the bottom of the “NGS-QC Generator” interface, when it lists your 

target. 

6. Once Galaxy indicates that the tasks have completed (turning green), select the “View 

Data” button for the task starting with “Results”. Then inspect each replicate, especially 

its quality rating and percent uniquely mapped reads. Evaluate them using the criteria 

above. 

Mendoza-Parra et al.63 and the NGS-QC tutorial (http://www.ngs-qc.org/tutorial.php#part4) 

provide details on how to interpret the results. 

 

http://www.ngs-qc.org/tutorial.php#part2
http://www.ngs-qc.org/tutorial.php#part4
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Box 5 | Accelerating Segway using a compute cluster 

We designed Segway to run on a large variety of cluster systems. Segway uses the 

Distributed Resource Management and Application API66 (DRMAA) version 1 for submitting its 

jobs to a cluster. This interface has been implemented for a variety of cluster systems 

including Grid Engine67 (GE), Condor68, Portable Batch System69 (PBS / Torque), and 

Platform Load Sharing Facility70 (LSF). 

 

Installing DRMAA 

We recommend that a cluster administrator installs DRMAA. With the exception of Grid 

Engine, which has DRMAA installed by default, each cluster system has its own specific 

installation procedure. The general steps for installing DRMAA are as follows: 

 

1. Download and build the DRMAA implementation for your cluster system: 

Grid Engine 

Not applicable: installed by default 

Torque or PBS Pro 

https://sourceforge.net/projects/pbspro-drmaa/ 

Platform Load Sharing Facility 

https://sourceforge.net/projects/lsf-drmaa/ 

https://sourceforge.net/projects/pbspro-drmaa/
https://sourceforge.net/projects/lsf-drmaa/
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Slurm workload manager 

https://github.com/natefoo/slurm-drmaa/releases 

 

2. Set the environment variable DRMAA_LIBRARY_PATH to the full name and path of the 

DRMAA library. For example, if you have GE installed in /sge/lib/linux-x64 execute: 

export DRMAA_LIBRARY_PATH="/sge/lib/linux-x64/libdrmaa.so" 

Computer cluster memory settings 

For Grid Engine only, in order to improve Segway's handling of memory usage, a 

"mem_requested" resource must be setup by the system adminstrator for Segway to use. 

After Segway has been installed, this can be achieved by running: 

python –m segway.cluster.sge_setup 

Compute cluster settings in Segway 

Some cluster configurations require submitted jobs to have specific settings. Segway can 

specify cluster specific settings with the --cluster-opt option. This option passes on what 

would normally be set as options from your native job submission command (such as qsub 

from Grid Engine or Torque). For example, for Segway to submit jobs to a Grid Engine queue 

named bioinformatics use the option: 

--cluster-opt="-q bioinformatics" 

 

Verifying job submission by Segway 

https://github.com/natefoo/slurm-drmaa/releases


   
 

60 

When Segway submits jobs, it logs each submission to the console. If the log entry starts with 

“queued” then DRMAA is running successfully. If the log entry starts with “running locally”, 

then Segway is not submitting the jobs to the cluster and they are instead running “locally” on 

the same machine that contains the Segway process. 
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Box 6 | Methods to compare and analyze segmentations 
 

Comparing a new segmentation with previously annotated segmentations can be used to help 

assign biological meaning to the numbered labels generated by Segway (e.g., patterns 

associated with TSS, promoters, or enhancers). One strategy for making these comparisons 

is to visualize a new segmentation alongside a published segmentation in the UCSC Genome 

Browser29 and compare the un-annotated labeled regions to previously annotated labels. For 

example, we can compare the DOHH2, a B-cell lymphoma cancer cell line, segmentation to a 

published segmentation of a lymphoblastic B-cell line, GM12878, from the Ensembl 

Regulatory Build.28 The Ensembl Regulatory Build partitioned the genome into regulatory 

regions and 18 cell lines are available for through the UCSC Genome Browser in the hg38 

assembly. The regulatory segmentation employs color-coding to identify the regulatory 

elements represented by each label (as illustrated below).  

 
 
 
 
 
 
 
In a UCSC track hub, we can visually compare the DOHH2 segmentation and ChIP-seq data 

to the GM12878 regulatory segmentation in order to manually assign labels by their 

association with regulatory segments, ChIP-seq signal, and gene models. To add the 

Ensembl Regulatory Segmentation to a hub containing an un-annotated segmentation, in the 

UCSC browser select “My Data” > “Track Hubs.” Under “Public Hubs”, connect the “Ensembl 

Regulatory Build.” After loading the hub, open the genome browser to the hg38 assembly and 

the regulatory track hub will appear in the window. To visualize only the GM12878 

segmentation, right click on the segmentation in the browser window and click “Configure Cell 

Type Activity.” Select only the GM12878 track and submit. Use the “zoom in” tool on the 
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browser for a closer view of the segments. Reorder the segmentation and signal tracks in the 

browser to facilitate visual comparison by clicking on the left-hand side of the track and 

dragging up or down to a new position. Adjust the configuration settings for each track by right 

clicking and selecting “Configure” to manipulate density of the display, axis display height, and 

color display. These settings will also display subsets of the regulatory segmentation. For 

example, a summary track from the regulatory segmentation can be included that identifies 

transcription factor binding sites from all cell types.  

 In figure XX.X, the CDKN1A gene locus was selected for visual comparison of the 

DOHH2 segmentation and the GM12878 published regulatory segmentation. This comparison 

included the ChIP-seq signal tracks, which may provide additional information about genomic 

features captured by segments and labels. The CDKN1A gene codes for a cyclin-dependent 

kinase inhibitor that is upregulated in multiple myeloma and is a potential therapeutic 

target.71,72 Specific genes or genomic regions can be targeted for comparison based on cell 

type and biological process of interest to provide new insights into gene regulation.  

 

Another strategy is to determine the similarity of intervals associated with a numbered label in 

a new segmentation to regions with an annotated label from a published segmentation. This 

type of analysis can be performed using bioinformatics tools to determine which regulatory 

genomic regions are enriched in the un-annotated segmentation labels, as illustrated below. 

This will help to assign 

biologically meaningful labels to 

new segmentations. 

 
This analysis can be performed 

entirely from the command line 
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or it may be performed using the R programming language in Rstudio. Scripts to perform the 

analyses are available (wwww.xxxx.com). In order to perform either analysis, the Ensembl 

Regulatory Segmentation must be downloaded and converted to bed file format. Navigate to 

segway.hoffmanlab.org and click on the link “Ensembl Regulatory Build for GRCh38 (hg38).” 

Select “segmentations/” and in the files section of the new page copy the link location for the 

GM12878. Use the “wget” command to download the bigBed file for this cell line. Install 

“bigBedToBed (http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/bigBedToBed) and 

convert the published segmentation file in bigBed file format to bed file format using the 

command bigBedToBed GM12878.bb GM12878.regulatory.bed.  

 The first bioinformatics approach uses the bedtools intersect command, which will 

generate a new bed file reporting the overlapping genomic regions between the intersected 

bed files.69 Using the script bed_enrichment.sh, the intersection bed file can be filtered to 

calculate a percent enrichment for the number of times a regulatory element overlaps a 

segment in a specific label.  

The second bioinformatics approach uses packages available through RStudio 

(download here: https://www.rstudio.com). In addition to calculating enrichment of regulatory 

elements within labels, this approach facilitates more robust analysis and visualization of the 

segmentations (e.g, statistics for relationships between intervals, easy-to-use plotting 

functions).  

Functional profiling of Segway annotation with gProfiler 

In this section we show how Segway annotations can be used to identify the biological 

processes that are specific to the cell type of interest. This section of the protocol involves 

installing libraries that are not required by neither Segway nor Segtools, therefore, we 

estimate that it is beyond the scope of this manuscript to have as detailed instruction as in the 

http://segway.hoffmanlab.org/
http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/bigBedToBed
https://www.rstudio.com/
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main text. Instead, we focus on explaining the main concepts, provide the scripts and the 

instructions to create a virtual environment to reproduce the analysis. 

The approach described here consist of defining a list of DOHH2 specific genes and use it as 

an input to the gProfiler tool.  

To define a list of DOHH2 promoter region, first identify the segment label that is the most 

enriched at promoter regions using the figure generated previously. Specifically, search in the 

the Figure 7 generated in step 14 for the label with the highest theoretical signals from the 

H3K4me3 track which is known as a mark of active promoter [PMID:15123803]. For DOHH2 

the label 8 seems the most relevant. You can confirm this hypothesis by looking at the most 

frequent location of this label in the Figure 9 generated in step 17 that shows that label 8 is 

enriched at gene starts.  

To obtain a list of gene ids expressed in DOHH2, get the coordinates of the segments with the 

TSS label and intersect it with gencode gene annotations. Run:  

segment_to_gencode_gene_list.py segway.bed.gz gencode.v25.annotation.gtf.gz 

–label 8 –output DOHH2.genes.csv 

[MMM-source] 

To identify the biological processed specific to the DOHH2 cell lines, the list of genes obtained 

above need to be filtered for relevant genes. It is at user’s discretion to determine what 

relevant genes are. Here we illustrate how to achieve this by subtracting to the DOHH2 

genes, the genes obtained from running the steps 1 to 17 of this protocol on the H1 Human 

embryonic stem cells (H1-hESc) and GM12878 cells from ENCODE, with the same histone 

marks (Table 2).  

After obtaining the list H1-hESc and GM12878 expressed genes by following the instructions 
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in this section, subtract these genes to the DOHH2 genes and run gProfiler: 

subtract_genes_and_run_gprofiler.py DOHH2.genes.csv H1hESC.genes.csv –

output DOHH2-H1hESC.enrichment.tsv 

subtract_genes_and_run_gprofiler.py DOHH2.genes.csv GM12878.genes.csv –

output DOHH2-GM12878.enrichment.tsv 

Interpretation of the enrichment analysis 

DOHH2 is an EBV-negative non-Hodgekin’s B-cell lymphoma cell line [PMID:1849602]. To 

identify epigenomic signatures of lymphoma that do not exist in the human embryonic stem 

cell (H1-hESC) or the EBV-positive lymphoblastoid cell line GM12878, we identified 

unsupervised epigenomic signatures of each cell type using H3K27ac, H3K4me3, H3K27me1, 

and CTCF ChIP-seq data and Segway. 

 

Segway identified 2966 promoters in DOHH2 that did not exist in H1-hESC. Gene ontology 

terms such as immune system process, leukocyte activation, immune effector process, 

adaptive immune response, and other immune related pathways had a significant enrichment 

in DOHH2-specific promoters (Fisher’s exact test FDR < 0.01). This is in line with the nature 

of the cell of origin for non-Hodgekin’s lymphomas [PMID:1849602]. 

 

Segway also identified 3292 promoters identified only in the EBV-negative DOHH2 but not in 

the EBV-positive lymphoblastoid cell line GM12878. Gene ontology terms such as cellular 

metabolic process and cellular biosynthetic processes had significant enrichment in DOHH2-

specific promoters. This agrees with previous evidence of metabolic shift and hypoxic stress 

in non-Hodgkin’s lymphoma [PMID:25158954,PMID:PMC4591764]. 
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Tables 

Table 1 | Troubleshooting Table 

Step Problem Possible Reason Solution 

8 Segway produces 
identical results each 
time it is run 

Accidentally have the 
random seed for 
Segway set 

Remove the Segway 
random seed with the 
command unset 
SEGWAY_RAND_SEED 

8 Segway produces 
different results each 
time it is run 

No random seed has 
been set or not 
enough instances 
have been run 

If you’re attempting to 
reproduce results 
consistently, consider 
using a random seed 
as described in Step 
8. If you’re not using 
a seed but getting 
significantly different 
results every time 
Segway is run, 
increasing your --
num-instances will 
allow Segway to 
create a more 
consistent trained 
model since it gains a 
larger trained sample 
size 

12 Need to recover from 
a crashed Segway 
process 

This could be a 
cluster issue or 
configuration issue. 
Check the error log 
output by Segway for 
the reason your 
training/identify run 
crashed for details 

To recover your 
Segway run, rename 
your old (train or 
identify) results 
directory to a new 
name which Segway 
can use to recover 
from. Specify the new 
directory name with 
the --recover 
option. Recovery only 
works with identical 
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parameters 

12 Not enough disk 
space or temporary 
directory issues while 
or after running 
Segway 

Segway creates 
temporary 
observation files as 
part of its process. 

Set the TMPDIR 

environment variable 
to a directory where 
you have write 
access and sufficient 
disk space 

14 Segtools does not 
produce PNG images 

To create PNG 
images, R requires 
an X11 display which 
will not be present on 
a headless node 

Copy the necessary 
files to a machine 
that has Segtools and 
an X11 display 
available and run 
Segtools there. 

Alternatively Install 
the R package, Cairo, 
on your machine. 
This may require a 
number of additional 
dependencies to be 
installed 

24 Track data from the 
uploaded Track hub 
is not displaying 
correctly on the 
UCSC Genome 
Browser 

The server hosting 
the track data does 
not support byte 
serving or does not 
advertise it with an 
“Accept-Ranges” 
HTTP response 
header 

Contact the hosting 
administrator to 
enable byte serving 
for the track hub track 
datasets or find an 
alternative web host 
that supports byte 
serving 

Box 1 I have Python 2.7 but 
my system reports 
that pip is not 
installed 

Pip does not 
automatically come 
bundled with some 
distributions of 
Python 2.7, or older 
versions of Python 

If possible, ask your 
administrator to install 
the necessary python 
package containing 
pip. If running Python 
2.7.9 or later, it is 
possible to install pip 
through the 
ensurepip module 
with ‘python -m 
ensurepip --
upgrade’. For all 

other cases refer to 
the pip 
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documentation 

Box 1 There is a Unicode-
related error when 
attempting to install 
numpy with pip 

Older versions of pip 
cannot install numpy 
correctly due to a 
unicode related bug 

Upgrade your pip 
version using ‘pip 
install --upgrade 
pip’ 

Box 1 The computer to run 
Segway on doesn’t 
have an internet 
connection 

Some cluster 
systems have strict 
policies regarding 
internet connectivity 

On a machine with an 
internet connection 
download Segway 
and all dependencies 
without installation by 
executing ‘pip 
install --
download 
segway_packages 
segway’. Copy the 
segway_packages 

directory to your 
target machine 
without an internet 
connection. To install 
Segway from the 
directory of python 
packages, execute: 
‘pip install --no-
index --find-
links 
segway_packages 
segway’ 

Box 2 MACS2 produces a 
segfault error, for 
example, after 
attempting to ‘Call 
peaks for each 
chromosome’ 

MACS2 will not 
create the necessary 
output directories for 
you 

Create the directory 
manually using 
‘mkdir’ and run your 

MACS2 command 
again 

Box 2 SPP installation fails 
with the error: 
‘configure: error: 
cannot find Boost 
headers version >= 
1.41.0’ 

SPP is unable to find 
your Boost C++ 
installation 

Ensure that you have 
properly set your 
BOOST_ROOT 

environment variable 
to include your Boost 
C++ installation. For 
example, if your 
Boost installation is 
located in directory 
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sampledir, execute: 

‘export 
BOOST_ROOT=sample
dir’. 

Box 4 ChIPQCreport 

reports X11 errors 
To create images, 
ChIPQCreport  

requires an X11 
display which will not 
be present on a 
headless node 

Copy the necessary 
files to a machine 
that has Segtools and 
an X11 display 
available and run 
ChIPQCreport there. 

Alternatively, on a 
headless node install 
the R package, Cairo, 
on your machine. 
This may require a 
number of additional 
dependencies to be 
installed. Place the 
necessary commands 
in a R script file, x.R, 

and run it via  xvfb-
run –a -s "-
screen 0 
1600x1200x24+32" 
Rscript x.R 

It may be necessary 
to also set 
options(bitmapTyp
e='cairo') in your 

R script file 
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Table 2 | Input signal ENCODE accession IDs 

 

Figure Legends 

 

Figure 1: Segway workflow for producing and analysing annotations. 

 

Figure 2: Sample output of “cat /proc/cpuinfo” on a Linux operating system. This particular CPU 

has two physical cores and hyperthreading (ht), marked in bold above. Hyperthreading allows 

software to treat one physical core as two effective cores for the operating system. As a result, 

this machine has four effective cores, marked in bold above. 

 

Figure 3: Sample of the expected output from Segway training. The first lines are windows 

saved for consideration while training the Segway model. The last lines are the EM training 

(EMT) jobs submitted to a cluster system. Segway determines individual EMT job names using 

numbers of training instance, EMT round, and window. 

 

Figure 4: Sample of expected output from the Segway identify task. The first lines are indexed 

genomic windows saved for subsequent annotation. The last lines are Viterbi jobs to run on a 

Target DOHH2 H1-hESc GM12878 

H3K4me1 ENCFF509XSM ENCFF591KWL ENCFF831ZHL 

H3K4me3 ENCFF745GML ENCFF372YWG ENCFF776DPQ 

H3K27ac ENCFF890NAY ENCFF423TVA ENCFF340JIF 

H3K27me3 ENCFF592CSV ENCFF043JFV ENCFF313LYI 

CTCF ENCFF884IIL ENCFF520THR ENCFF279CYY 
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cluster system. Segway numbers the Viterbi job names based on the previously indexed 

windows. 

 

Figure 5: Sample of the resulting segmentation produced by Segway. After a BED file header 

line, each line contains information on the chromosome, region, and label assigned to each 

region. 

 

Figure 6: Gaussian emission parameters learned by training a 10-label model on 5-signal 

dataset.  

 

Figure 7: Distribution of the segment sizes for each label shown as a violin plot. 

 

Figure 8: Segment counts and genome coverage per label. In blue: the fraction of segments for 

each label. In red: the fraction of the genome covered for each label. 

 

Figure 9: Segment labels’ enrichment relative to an idealized gene model derived from 

GENCODE 25. Color indicates enrichment (red) or depletion (blue). 

 

Figure 10: Example of signal tracks and segmentations on the UCSC Genome Browser for the 

CDK1 locus.  
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Figure B3.1. Using the ENCODE DCC search panel to find a particular experiment. 

 

Figure B3.2. Example of the type of results you would get when using ENCODE DCC website 

search option. 

 

Figure B3.3. When you select the results of a search on the ENCODE DCC website, the 

website will direct you to a webpage on the dataset. In this webpage, you can find detailed 

information on aspects of the experiment. You can also download raw or processed data files 

(e.g. bigWig or BAM files) directly from this webpage. 

 

Figure B6.1: Classification of regulatory elements for labels in the Ensembl Regulatory Build. 

 

Figure B6.2: Loading cell type specific segmentation into the UCSC Genome Browser session 

 

Figure B6.3: Comparison of Ensemble Regulatory segmentation for GM12878 cell line and 

DOHH2 segmentation at the MEN1 locus. 

 

Figure B6.4: Identification of enhancer regions at the MEN1 locus. The regulatory segmentation 

also identifies 2 distal enhancer regions at the MEN1 gene. This figure shows segments in 

labels 3, 5, and 9 that overlap with 1 of these identified enhancer regions. This type of visual 

comparison at other genes may identify one of these labels as highly correlated to overlap 

CTCF binding sites or enhancer regions identified by the regulatory segmentation.  
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Figure B6.5: Configuring tracks in track hub for comparison of segmentations. 

 

Figure B6.6: Percentage of regulatory elements from Ensembl segmentation that overlap with 

labels 1 and 9 in the DOHH2 segmentation. 


