

Canadian Bioinformatics Workshops

www.bioinformatics.ca bioinformaticsdotca.github.io

bioinformatics.ca

bioinformatics.ca

Summary Slides

Veronique Voisin Pathway and Network Analysis of –omics Data May, 10-12, 2021

Creating Networks

Where are we in the workflow?

bioinformatics.ca

RNAseq

- Bulk RNAseq 2 class design:
 - GSEA
 - Enrichment Map

- Single cell Data:
 - GSEA
 - single sample GSEA ssGSEA(), gsva() GSVA in R
 - Wilcoxon Rank sum test (R, Panther)

GWAS -- > MAGENTA <u>https://software.broadinstitute.org/</u> <u>mpg/magenta/</u>

The only **input** required is a table with variant association p-values and their chromosome positions taken from a genome-wide association study or meta-analysis. **Optional:** pathway/s or gene set/s of interest. Otherwise, we provide a set of pathways from public databases (see below).

The main **output** of MAGENTA is a nominal **gene set enrichment analysis (GSEA)** *p*-value and a **false discovery rate** for each gene set or pathway tested. There are several options, including running MAGENTA in the absence of a subset of genes, such as a predefined set of disease or trait genes. Additional information is provided, such as the expected and observed number of genes above the enrichment cutoff, and the number and name of genes in each tested gene set that lie near validated disease or trait SNPs if inputed by the user.

	Mir	ſS,	Ρ	ath	١W	/ays	and Targets
n r	miRPathDB	v2.0 H	ome	About Do	cumentat	on Download [.]	mirs
			Γ	miRI	Path	DB 2.0	Mirs in pathway
	mikina				au		targets
				Searc	h		
				Enter a miF	INA or pa	hway name:	Enrichment analysis
Fc gar	nma R-me	ediated p	hagod	ytosis			Interaction networks
miRNAs In this table mIRV Show 10	S that are signals are depicted that have signals are depicted	gnificantly e	this pathway than	d for this pat	hway	Search:	mic A A, miero DNIA, e prich per e pt
Excel CSV	Column visibility						mieaa: microkina enrichment
Database	hsa-miB-126-30	experimental (any)	7	0.281231	1 P-value	AKT1_AKT2_CRK_CRKL_PK3CG_PK	
miRBase	hsa-miR-184	experimental (any)	5	0.297456	1.61e-4	AKT1,AKT2,INPPL1,PLPP3,PRKC8	
miRCarta	m-5765	predicted (union)	56	36.0553	3.01e-4	AKT2, AMPH, ARPC2, ARPC3, ARPC4	analysis and annotation
miRCarta	m-17942	predicted (intersection)	12	2.26763	3.86e-4	ARPC2, CRK, LAT, MAPK1, NCF1, PIP5	
miRCarta	m-152	predicted (union)	57	38.8709	4.14e-4	AKT2,AMPH,ARPC1B,ARPC2,ARPC	
miRCarta	m-12614	predicted (union)	55	36.7072	4.47e-4	AKT2,ARPC1B,ARPC2,ARPC4,ARP	nttp://www.ccb.uni-saarland.de/mieaa_tool/
miRBase	hsa-miR-184	experimental (strong)	5	0.336283	4.48e-4	AKT1,AKT2,INPPL1,PLPP3,PRKC8 MAPK1_MAPK3	
miRRasa	hes miD 424 Eq	predicted (uplan)	67	20.6222	7.070-4		http://www.lirmed.com/tam2/

Day]+					
nrichment analysis results	ult					
······································						
Text file of results Results Visualization						
Term 🔺	Count	Percent	Fold	P-value	Bonferroni	FDR
Category: Cluster (4 Items)						
hsa-mir-106b cluster [details]	1	0.33333	33.63889	0.0295	1	0.3755
hsa-mir-17 cluster [details]	2	0.33333	33.63889	1.32e-3	0.3569	0.08
hsa-mir-423 cluster [details]	1	0.5	50.45833	0.0197	1	0.3365
hsa-mir-6081 cluster [details]	1	0.2	20.18333	0.0487	1	0.479
∃ Category: Disease (194 Items)						
Acute Cerebral Infarction [details]	1	0.16667	16.81944	0.0581	1	0.5292
Acute Ischemic Stroke [details]	2	0.14286	14.41667	7.67e-3	1	0.1858
Acute Myocardial Infarction [details]	2	0.04348	4.38768	0.0731	1	0.5944
Acute Pancreatitis [details]	1	0.14286	14.41667	0.0675	1	0.5676
Adenocarcinoma, Colon [details]	2	0.08696	8.77536	0.0203	1	0.2926
Adenocarcinoma, Esophageal [details]	1	0.04545	4.58712	0.1983	1	1
Adenocarcinoma, Gastric [details]	1	0.02632	2.6557	0.3191	1	1
Adenocarcinoma, Lung [details]	2	0.0198	1.99835	0.2642	1	1
Adrenal Cortex Neoplasms [details]	1	0.08333	8.40972	0.1131	1	0.7828

bioinformatics.ca

Metabolomics

A) list of metabolites from your experiment

B) pathway: a set of metabolites known to be involved in metabolic pathways

The colored compounds indicate potential matches from the user's input, with red colors indicating significant hits and blue colors indicating non-significant hits.

Pathway	Metabolites
Tryptophan metabolism	C00025; C00024; C00027; C00026; C00021; C00020; CE2119; C00028; C03722; C05647; C05645; CE1395; C05643; C05640; C00780; C05648; C00704; C01342; C00010; C00014; C00016; C00019; C15605; C00067; thbpt4acam; C05651; C03512; C05653; C02693; C05660; C00398; CE5982; C00643; C02220; C00078; C00978; C00877; C05642; CE5860; C01252; C05637; C02406; C00108; C00272; CE1918; C01652; C02470; C01144; C06212; C06213; CE2949; CE2948; CE3140; CE2122; C00479; CE2947; C01717; CE3092; CE6205; CE5899; C03161; C00268; C00322; C04409; CE2153; C02700; CE2095; C00328; CE3087; CE3086; C00322; C04409; C01352; C00051; C00058; C00030; C00331; C00332; C00936; C03824; C05636; C05635; C05634; C05639; C05638; C10164; C00637; C03227; C01598; C00525; C00527; C00041; C03024; C00954

bioinformatics.ca

https://sciex.com/applications/life-scienceresearch/metabolomics/metabolomics-pathway-analysis

						Explore Resu	ults in Network
		14 44	1234	5 (** **			
Pathway Name	Total 0	Hits (all) 0	Hits (sig.)	Fisher's Pvalue 0	EASE Score 0	Gamma Pvalue 🗘	Match Details
ryptophan metabolism	94	64	21	0.0045504	0.0098086	0.0046682	View
scorbate (Vitamin C) and Aldarate Metabolism	29	18	9	0.0026117	0.010691	0.0046835	View
minosugars metabolism	69	29	12	0.0038443	0.011655	0.0047003	View
litrogen metabolism	6	4	4	0.0012414	0.022604	0.0048951	View
I-Glycan biosynthesis	48	14	7	0.0080322	0.032406	0.0050767	View
yrimidine metabolism	70	43	14	0.020992	0.045203	0.0053243	View
itamin B3 (nicotinate and nicotinamide) metabolism	28	19	8	0.015895	0.049225	0.0054047	View
ialic acid metabolism	107	28	10	0.025643	0.062907	0.0056878	View
lanine and Aspartate Metabolism	30	17	7	0.0272	0.08133	0.0060936	View
Iutathione Metabolism	19	10	5	0.025367	0.099714	0.0065288	View
lexose phosphorylation	20	18	7	0.037539	0.10359	0.0066246	View
rginine and Proline Metabolism	45	31	10	0.051168	0.10984	0.0067823	View
lycosphingolipid biosynthesis - ganglioseries	62	11	5	0.039494	0.13447	0.0074426	View
Slutamate metabolism	15	11	5	0.039494	0.13447	0.0074426	View
fethionine and cysteine metabolism	94	46	13	0.075854	0.13715	0.0075184	View
urine metabolism	80	51	14	0.082458	0.1436	0.007704	View
arathio degradation	6	4	3	0.022858	0.16222	0.0082678	View
itamin B9 (folate) metabolism	33	12	5	0.057555	0.17336	0.0086255	View
lycosphingolipid biosynthesis - globoseries	16	8	4	0.045914	0.17647	0.0087285	View
tarch and Sucrose Metabolism	33	15	5	0.13495	0.30626	0.014409	View

Download Result Tables: Pathway Hits Compound Hits

New Dee New

List of metabolites: Fishers' exact test If it is possible to rank all the metabolites: GSEA

11

D + Q Q + +

LIPID MAPS® WikiPathways

LIPID MAPS[®] has contributed a set of 10 pathways to the WikiPathways project. Pathways include metabolism of

- cholesterol
- eicosanoids
- glycerolipids
- omega fatty acids
- sphingolipids

https://www.lipidmaps.org/resources/pathways/index.php

ATACseq / CHIPseq

- GREAT (Standford) is a recommended tool (from chromosomal position to gene + enrichment analysis)
- It is compatible with EnrichmentMap

	Ting
GREAT predicts functions of cis-regulatory regions.	Do
any coding genes are well annotated with their biological functions. Non-coding regions typically lack such annotation. GREAT assigns ological meaning to a set of non-coding genomic regions by analyzing the annotations of the nearby genes. Thus, it is particularly useful in udying cis functions of sets of non-coding genomic regions. Cis-regulatory regions can be identified via both experimental methods (e.g. hIP-seq) and by computational methods (e.g. comparative genomics). For more see our Nature Biotech Paper.	1) Anc
ews Aug. 19, 2019: GREAT version 4 adds support for human hg38 assembly and updates ontology datasets for all supported assemblies.	2) C aen
	BE
 Sep. 8, 2018: GREAT has served over 1 million job submissions. Oct. 23, 2017: GREAT is moved to a VM to eliminate proxy errors. June 22. 2017: GREAT hardware upgrade to meet increasing submission volume. 	
 Sep. 8, 2018: GREAT has served over 1 million job submissions. Oct. 23, 2017: GREAT is moved to a VM to eliminate proxy errors. June 22, 2017: GREAT hardware upgrade to meet increasing submission volume. Nov. 16, 2015: The GREAT user help forums are frozen. Feb. 15, 2015: GREAT version 3 switches to Ensembl genes, adds support for zebrafish danRer7 and mouse mm10 assemblies, and adds not protocological control or protocol control control	

1) Proximal analysis (+-2kb around TSS of genes

2) Distal analysis (+-50kb around genes, filter genomic regions using tools like Segway or BEHST)

bioinformatics.ca

Non model organisms

- 1. Find a pathway database/ gmt file which is the closest to your organism
- 2. Convert your gene identifier to the gene identifiers used in the gmt file that you found using g:Convert and g:Orth
- 3. Both GSEA and g:Profiler accept custom gmt file.
- 4. GeneMANIA offers several organisms and the option to build your interaction networks.

Script to create a gmt file from the GO ontology: https://www.dropbox.com/s/wm3kq4lsdlfwcoq/creategmt.R?dl=0

Congratulations!!

bioinformatics.ca

We are on a Coffee Break & Networking Session

Workshop Sponsors:

Canadian Centre for Computational Genomics

McGill initiative in Computational Medicine

