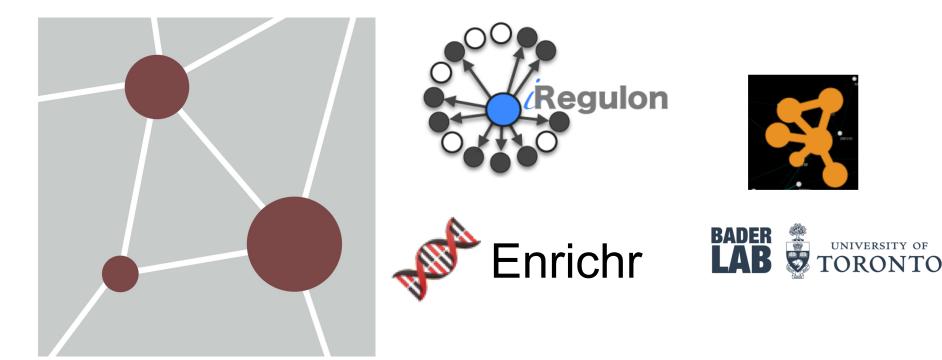


Canadian Bioinformatics Workshops

www.bioinformatics.ca bioinformaticsdotca.github.io

Supported by


Gene Regulation and Motif Analysis Practical Lab / iRegulon

Veronique Voisin

Pathway and Network Analysis of –omics Data

May, 10-12, 2021

Learning Objectives

This practical lab focuses on finding potential transcription factors that would regulate our gene list.

bioinformatics.ca

We are using 2 tools

- EnrichR which is a web app doing enrichment analysis.
- IRegulon which is a Cytoscape app applying a GSEA like algorithm.

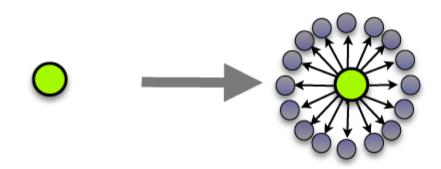
iRegulon

http://iregulon.aertslab.org/

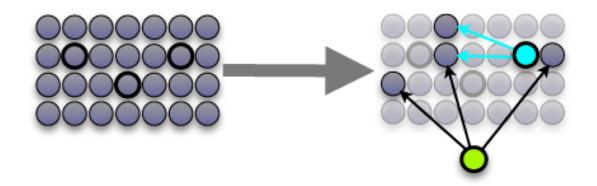
- Cytoscape app
- Developed to find transcription factor targets in a set of co-regulated genes
- Use precomputed results:

* precomputed occurrence of transcription motifs and chip-Seq peaks in promoter of all genes in genome

* rank all genes in genomes based on this result for each known transcription factor


bioinformatics.ca

We are using iRegulon to answer 2 questions:



- 1) Find the targets of a transcription factor of interest
 - Advantages: Targets are displayed as a network, we can overlay extra information of the created network like node colors.

 2) Given a set of genes, found if these genes are co-regulated by some transcription factors listed in the iRegulon database.

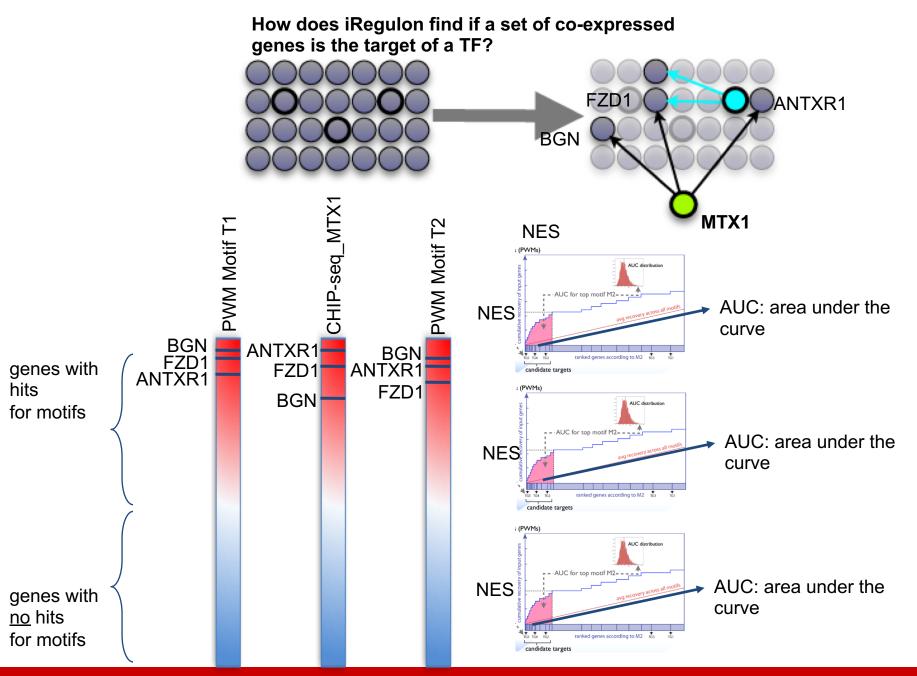
iRegulon uses:

bioinformatics.ca

Position Weight Matrix (PWM) (+transcription factor predicted binding site)

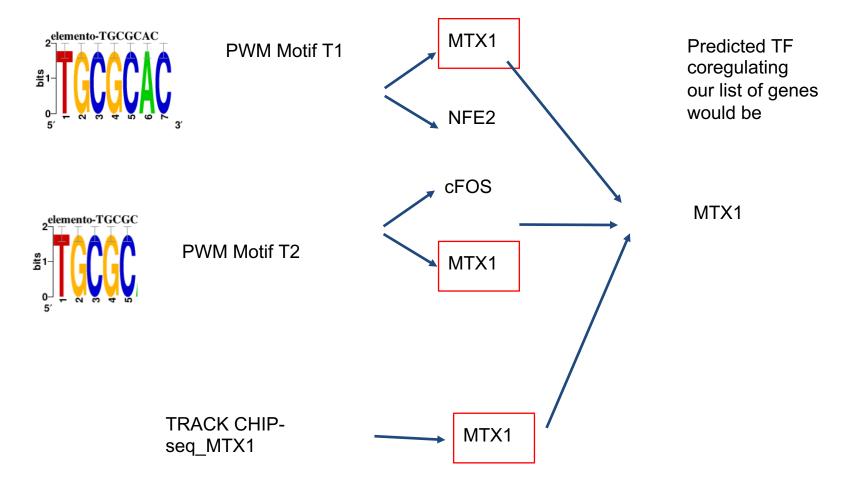
for the second s

and


 CHIP-Seq data (immunoprecipitation of chromating using an antibody specific to a TF of interest + DNA sequencing)

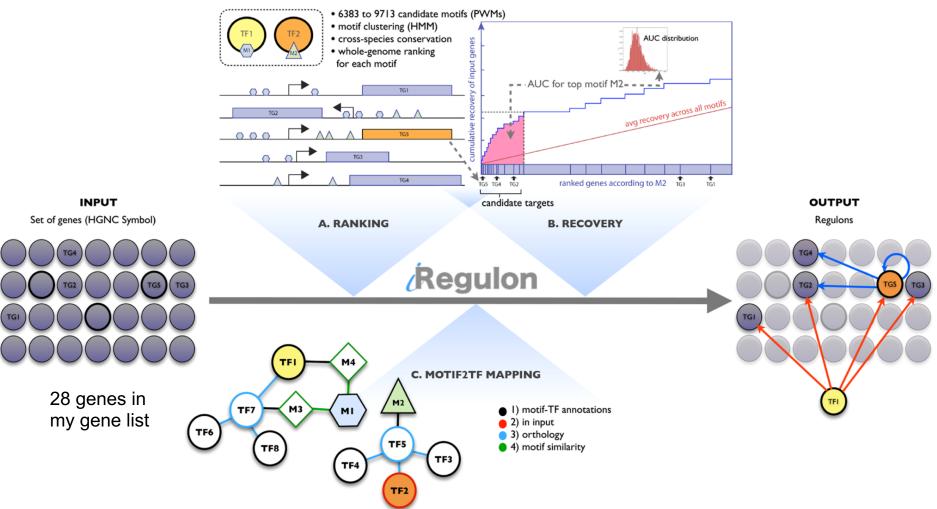
To estimate transcription factor binding on promoter of genes of interest

Description of the motif and track collections used.


Source	Organism(s)	Type of motif	# motifs "6K"	# motifs "10K"	# tracks "1K ChIP"	
Elemento [73]	Drosophila	Predicted (conserved) ^a	371	371	-	
FlyFactorSurvey [75]	Drosophila	B-1H, others (e.g., FlyReg)	614	652	-	
hPDI [77]	Human	Experimental	437	437	-	
Jaspar [21]	Multiple species	Curated	1315	1315	-	
SelexConsensus [76]	Drosophila	Curated (FlyReg)	38	38	-	
Stark [74]	Drosophila	Predicted (conserved) ^a	228	228	-	
Tiffin [76]	Drosophila	Predicted (gene sets) ^a	120	120	-	
TRANSFAC PUBLIC [5]	Multiple species	Curated, ChIP-chip	398	398	-	
TRANSFAC PRO [5]	Multiple species	Curated, ChIP-chip	1153	1850	-	
YetFasco [78]	Yeast	Uniprobe, Curated, ChIP-chip	1709	1709	-	
ENCODE [79]	Human	Predicted (from DHS) ^a	-	683	-	
Factorbook [46]	Human	ENCODE ChIP-Seq motifs	-	79	-	
Taipale [132]	Human, Mouse	HT-Selex	-	820	-	
idmmpmm [133]	Human	footprints, Selex, b1h, peaks	-	39	-	
SwissRegulon [134]	Human	Curated	-	190	-	
Wolfe [135]	Drosophila	ZFP motifs	-	36	-	
HOMER [116]	Multiple species	ChIP-Seq Motifs, others (e.g. ENCODE)	-	1865	-	
Dimers [136]	Human	Predicted dimers	-	603	-	
ENCODE ChIP-Seq [23]	Human	-	-	-	999	
Taipale ChIP-Seq [24]	Human	-	-	-	117	
p53 and control ChIP-Seq (this study)	Human	-	-	-	2	
Total			6383	11611 (9713 nr)	1118	

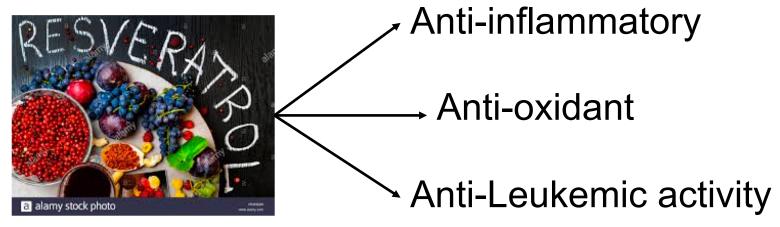
bioinformatics.ca

bioinformatics.ca


From Motifs, Tracks to Motif2Fmapping Transcription Factor

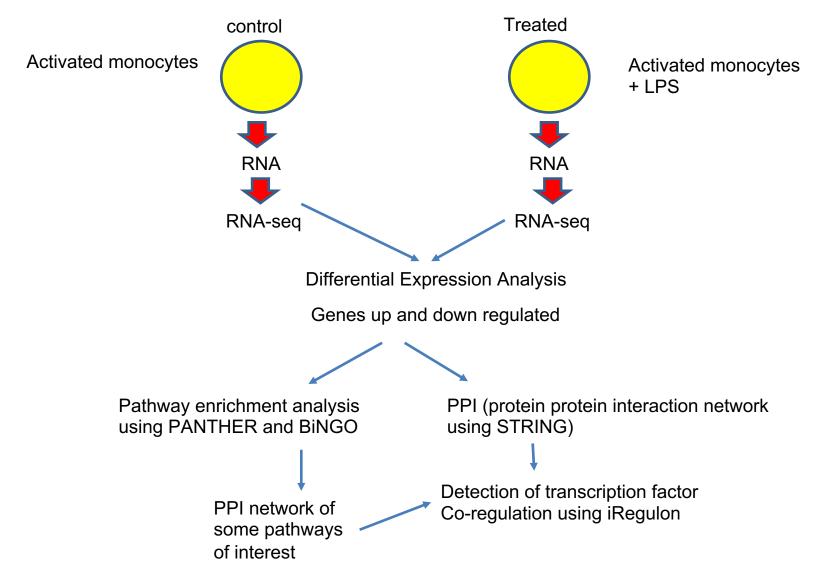
Module

bioinformatics.ca


Motif2Fmapping

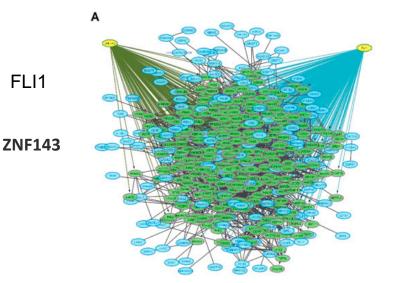
bioinformatics.ca

• Example of a published paper using iRegulon


Resveratrol decreases the expression of genes involved in inflammation through transcriptional regulation

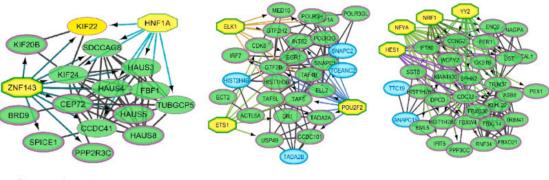
bioinformatics ca

https://www.sciencedirect.com/science/article/pii/S0891 584918314886?via%3Dihub


Resveratrol decreases the expression of genes involved in inflammation through transcriptional regulation

Module

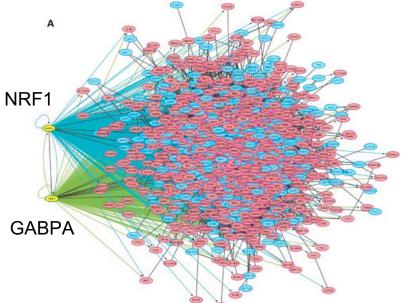
bioinformatics.ca


Resveratrol decreases the expression of genes involved in inflammation through transcriptional regulation

iRegulon on GENES UP REGULATED

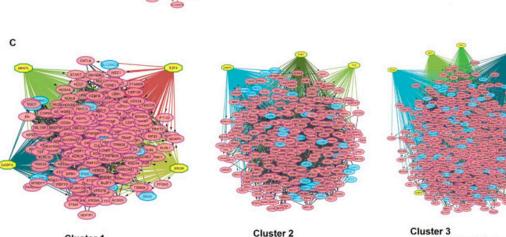
С

Module


Cluster 1 Microtubule-based process

Cluster 2 Transcription, DNA-dependente

Cluster 3 Organelle organization


bioinformatics.ca

Resveratrol decreases the expression of genes involved in inflammation through transcriptional regulation

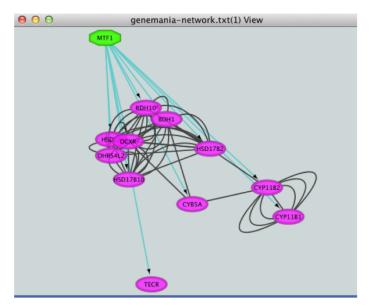
iRegulon on GENES DOWN REGULATED

The prediction of master regulators using the iRegulon tool showed **nuclear respiratory factor 1 (NRF1)** and **GA-binding protein alpha subunit (GABPA)** as the main regulators of the downregulated genes

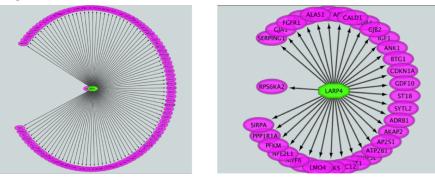
Gene expression

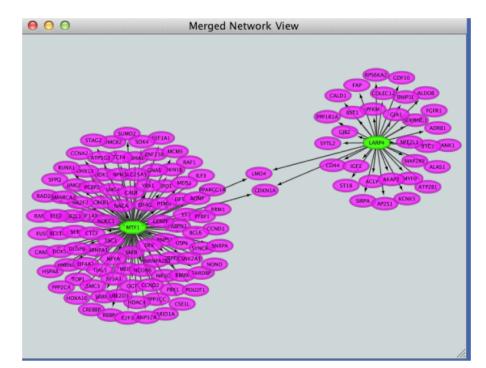
Cluster 3 Nucleic acid metabolic process

bioinformatics.ca


Module

Cluster 1


Cell cycle


iRegulon practical lab.

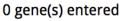
Exercise 1. Detect regulons from coexpressed genes

Exercise 2. Create a metatargetome using iRegulon and merge 2 networks in Cytoscape.

bioinformatics.ca

• Input can be a gene list or a bed file

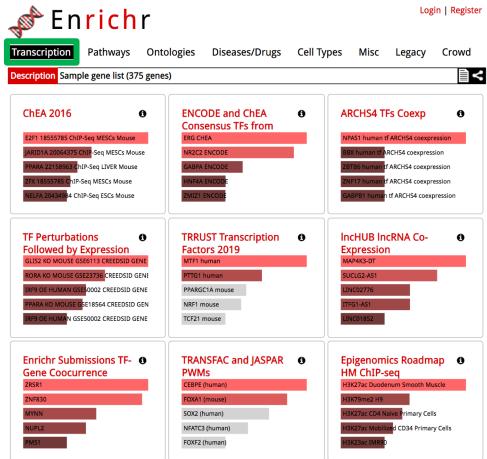
Note: a bed file contains chromosome coordinated of the peaks identified for example in ATACseq or ChipSeq experiments. Consider filtering peaks in region proximal to associated genes like in promoter regions.


Input data

Choose an input file to upload. Either in BED format or a list of genes.

Try an example **BED file**.

Choose File No file chosen


Paste a list of valid Entrez gene symbols on each row in the text-box below. Try a gene set example.

- Test: Fisher's exact test, with a pvalue corrected for multiple hypothesis testing
- Output: a downloadable table or graphs
- No option to put a reference background: use only if you are doing a whole genome study!
- Enrichr has a vast variety of gene-set sources.
- In this practical lab, we are only going to focus on "**Transcription**".
- Possibility to download a result of interest and create an enrichment map in Cytoscape using the Generic/gProfiler/Enrichr format

bioinformatics.ca

Enrichr output table

Fis	sher	's e	xa	ct f	est
1.15		30	70		.031

Term	Overlap	P-value	Adjusted P-value	Old P-value	Old Adjusted	Odds Ratio	Combined Score	Genes					
NR5A1 human	8/22	1.86E-16	1.06E-13	0	0	151.515152	5488.395484	HSD3B2;STAR;CY	(P11A1;CY	P11B2;CYP11	LB1;HSD3B1;C	YP19A1;CYP1	.7A1
NR5A2 human	5/12	5.02E-11	1.43E-08	0	0	173.611111	4117.076135	HSD3B2;STAR;CY	(P11A1;CY	P11B1;CYP19	9A1		
NR5A1 mouse	5/23	2.09E-09	3.98E-07	0	0	90.5797101	1810.220371	STAR;CYP11A1;C	YP11B2;C	YP19A1;CYP1	7A1		
NR4A1 human	4/15	3.91E-08	5.58E-06	0	0	111.111111	1895.289459	HSD3B2;STAR;CY	(P11A1;CY	P17A1			
CREB1 human	6/90	7.39E-08	8.44E-06	0	0	27.777778	456.1178554	AR;CYP11A1;CYP	11B2;CYP	11B1;CYP19A	1;CYP17A1		
NROB1 human	3/10	1.54E-06	1.46E-04	0	0	125	1673.092298	STAR;CYP19A1;C	YP17A1				
NR0B1 mouse	3/11	2.11E-06	1.72E-04	0	0	113.636364	1484.996478	STAR;CYP11A1;C	YP19A1				
SF1 human	3/12	2.81E-06	2.01E-04	0	0	104.166667	1331.455379	STAR;HSD3B2;CY	/P11A1				
SF1 mouse	3/15	5.78E-06	3.67E-04	0	0	83.3333333	1005.029762	STAR;CYP11A1;C	YP17A1				
SP1 human	8/472	1.49E-05	8.53E-04	0	0	7.06214689	78.4727961	AR;STAR;HSD17E	B1;HSD17E	32;HSD3B1;H	SD17B11;CYP	19A1;CYP17A	1
NR2F1 human	2/9	2.01E-04	0.010427214	0	0	92.5925926	788.2250101	CYP19A1;CYP17A	1				
GATA6 human	2/9	2.01E-04	0.009558279	0	0	92.5925926	788.2250101	CYP11A1;CYP17A	1				
NR4A1 mouse	2/10	2.51E-04	0.011011909	0	0	83.3333333	690.9348177	AR;HSD3B1					
JUN human	4/149	4.46E-04	0.018198668	0	0	11.1856823	86.2946171	AR;STAR;CYP11A	1;CYP19A	1			

gene-set (pathway)

Overlap: Numerator -> # of genes in my gene list and tested gene-set

Denominator -> # of genes in the original gene-set FDR: Correction for multiple hypothesis testing List of genes in the overlap

bioinformatics.ca

We are on a Coffee Break & Networking

Session

Workshop Sponsors:

bioinformatics.ca