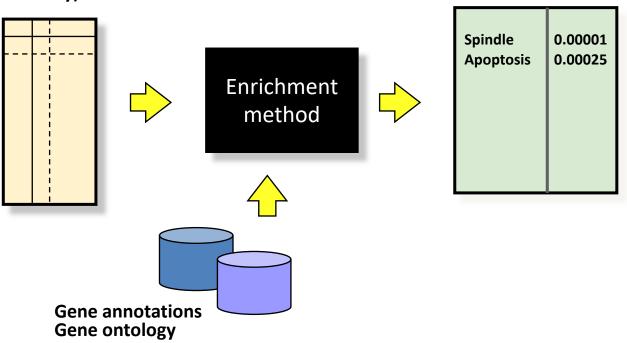
Genomic set enrichment analysis enhanced through integration of chromatin long-range interactions Michael M. Hoffman @michaelhoffman

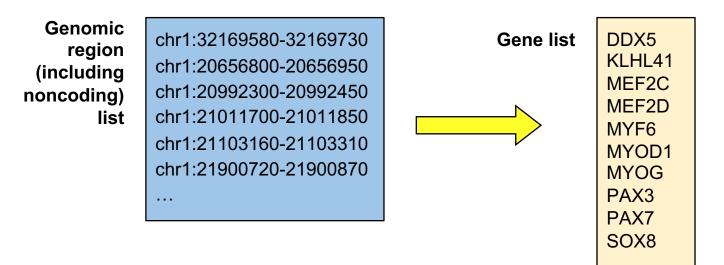
Annie Lu @zhiyuanlu_annie

Linh Huynh @vietlinh_huynh


Davide Chicco @davidechicco_it

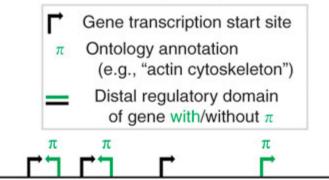
Sarah Bi @h_s_b_i

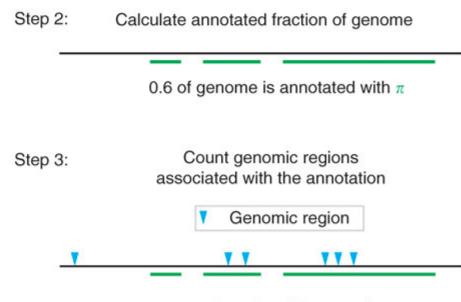
Gene set enrichment


Enrichment Table

Gene expression data (from RNA-seq or microarray)

Adapted from Quaid Morris

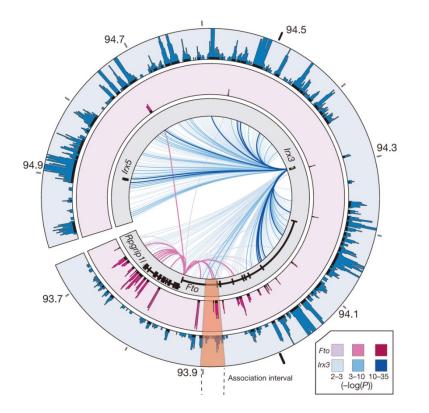

Enrichment for arbitrary genomic regions



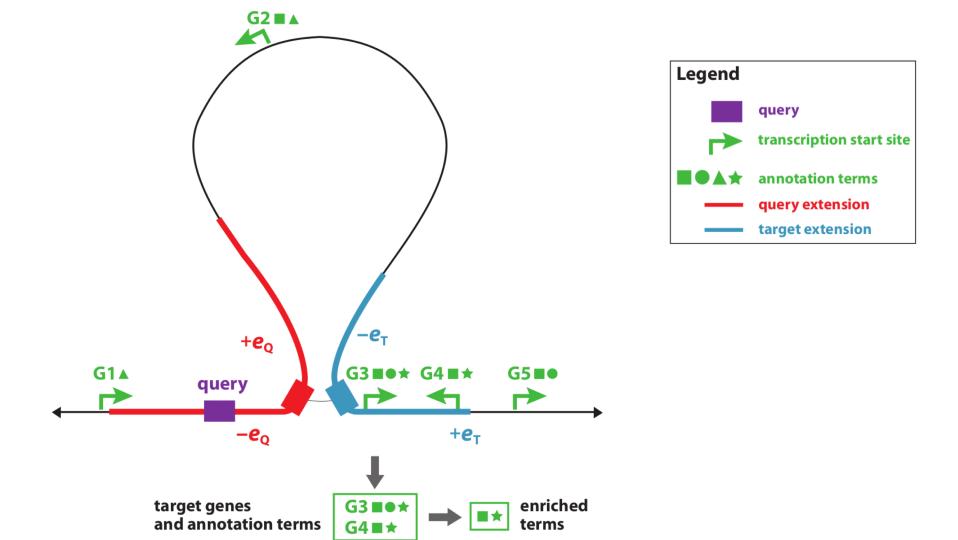
Enrichment in a non-gene context

Genomic Regions Enrichment of Annotations Tool (GREAT)

Step 1: Infer distal gene regulatory domains



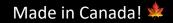
5 genomic regions hit annotation π

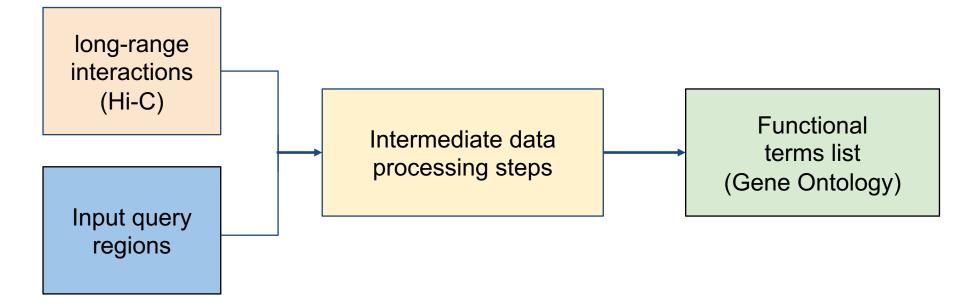

McLean et al. 2010. Nat Biotechnol 28:495.

Regulatory elements & adjacent genes

Genome-wide association studies (GWAS) have reproducibly associated variants within introns of FTO with increased risk for obesity and type 2 diabetes $(T2D)^{1-3}$. Although the molecular mechanisms linking these noncoding variants with obesity are not immediately obvious, subsequent studies in mice demonstrated that FTO expression levels influence body mass and composition phenotypes⁴⁻⁶. However, no direct connection between the obesity-associated variants and FTO expression or function has been made⁷⁻⁹. Here we show that the obesity-associated noncoding sequences within FTO are functionally connected, at megabase distances, with the homeobox gene IRX3. The obesity-associated FTO region directly interacts with the promoters of IRX3 as well as FTO in the human, mouse and zebrafish genomes. Furthermore, long-range enhancers within this region recapitulate aspects of IRX3 expression, suggesting that the obesity-associated interval belongs to the regulatory landscape of IRX3. Consistent with this, obesity-associated single nucleotide polymorphisms are associated with expression of IRX3, but not FTO, in human brains. A direct link between IRX3 expression and regula-

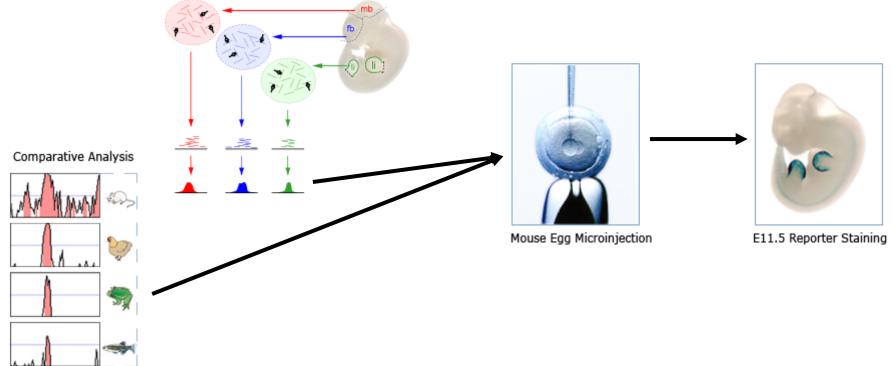
Smemo et al. 2014. Nature 507:371.


Biological Enrichment of Sequence Targets


Biological Enrichment of Hidden Sequence Targets

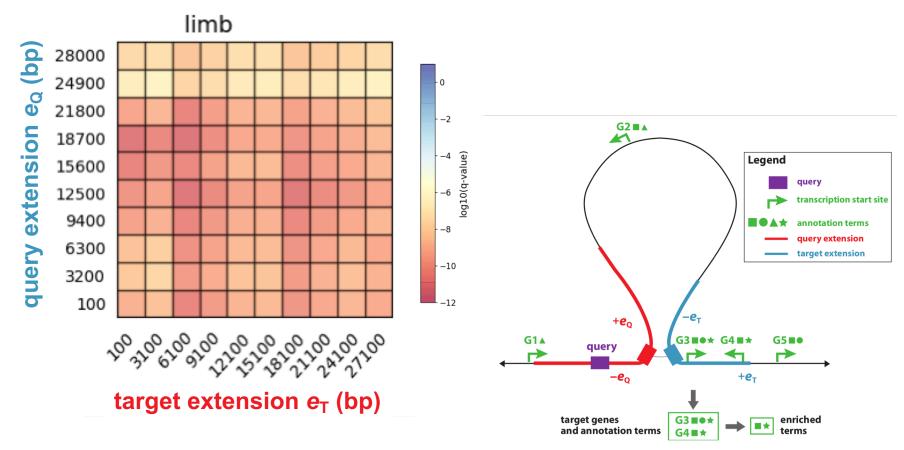
Biological Enrichment of Hidden Sequence Targets

BEHST workflow



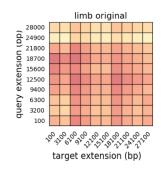
Hi-C datasets

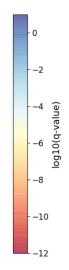
cell type	description	# Hi-C interactions	mean interaction resolution (bp)
GM12878	B-lymphocyte lymphoblastoid	9 448	1 173 831
HeLa-S3	epithelioid cervical carcinoma	3 094	1 435 018
HMEC	mammary epithelial cell	5 152	215 167
HUVEC	umbilical vein endothelial cells	3 865	389 545
IMR90	fetal lung fibroblasts	8 040	416 673
K562	immortalized myelogenous leukemia	6 057	656 974
KBM7	chronic myelogenous leukemia	2 634	487 749
NHEK	normal epidermal keratinocytes	4 929	434 663
Union	union of 8 cell types, excluding duplicates	34 367	742 691


Use case: E11.5 mouse enhancers

ChIP-seq from tissues

https://enhancer.lbl.gov/


Grid search of extension parameters



Shuffled controls

- Expectation: BEHST outputs more significant enrichment from original data than random data
- Applied BEHST to 7 sets of VISTA enhancers
- Compared with two shuffled negative controls:
 - 1. Total shuffle: randomly shuffle the enhancers across the whole genome
 - 2. TSS shuffle: shuffle in a way that preserved distance to the nearest transcription start site (TSS)

Comparing to shuffled controls

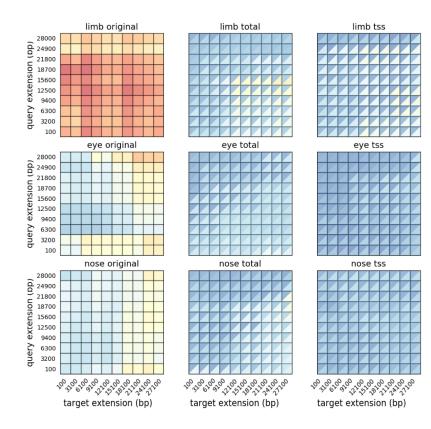
Comparing to shuffled controls

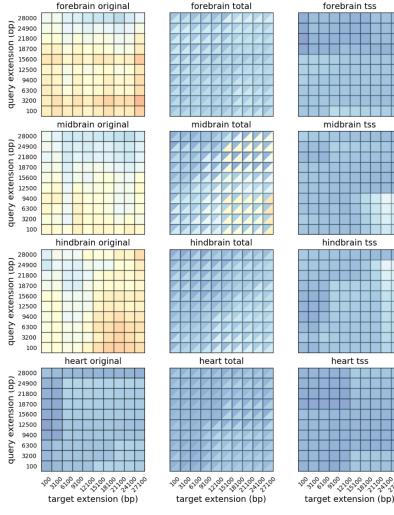
Comparing to shuffled controls

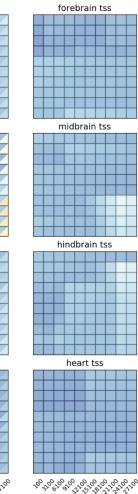
- 0

-2

-4

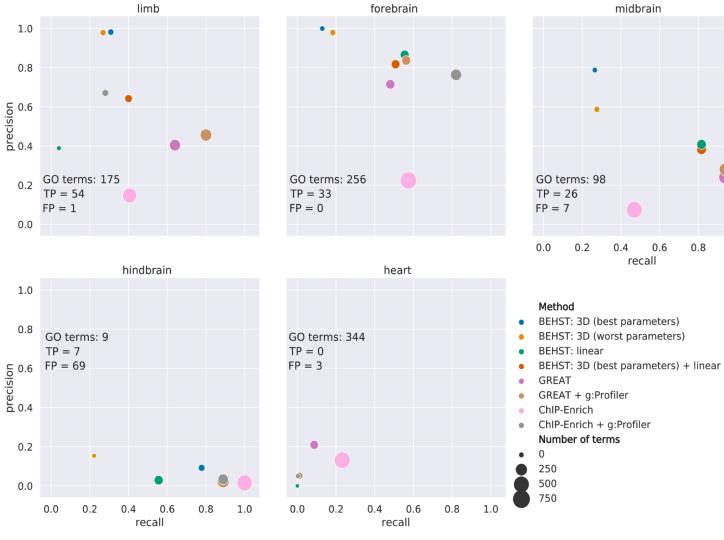

-6


-8


-10

-12

log10(q-value)


	sub-ontology	term ID	EF/UF	tama nama
			EF/UF	term name
8.21 14	${ m MF}$	GO:0003700		sequence-specific DNA binding
				factor activity
1.04×10	MF	GO:0001071		nucleic acid binding transformed factor
				activity
2.47×10^{-09}		GO:0072358	\mathbf{UF}	cardiovascular system copment
3.00×10^{-09}		GO:0007507	\mathbf{UF}	heart developmer
1.06×10^{-08}	L	GO:0035108	\mathbf{EF}	limb morphog
1.07×10^{-08}	BP	CO:0060173	\mathbf{EF}	limb develor
1.21×10^{-08}	BP	0045892		negative con of transcription,
				DNA-ent
1.27×10^{-08}	BP	G 287		orgenesis
1.33×10^{-08}	BP	GO:1		regulation of cellular macromolecule
				nthetic process
2.88×10^{-08}	BP	GO:005125		gative regulation of RNA metabolic process
3.31×10^{-08}	BP	GO:0035295		tube development
3.36×10^{-08}	BP	GO:0010629		negative regulation of gene expression
3.82×10^{-08}	BP	GO:001055		gative regulation of macromolecule
				nthetic process
7.97×10^{-08}	BP	GO:P	UF	orphogenesis
9.81×10^{-08}	BP	GC _62		em organ morphogenesis
1.42×10^{-07}	BP	J 0326	\mathbf{EF}	embry yb morphogenesis
1.80×10^{-07}	BP	.0060562		epithelia
2.19×10^{-07}	BP	rO:0035239		tube morph
2.31×10^{-07}	M	GO:0043565		sequence-spech binding
2.32×10^{-07}		GO:0060429		epithelium devel
4.26×10^{-07}		GO:0000981		sequence-specific DN Ving RNA
				polymerase II transcriptor activity
$2.64 \times 10^{\circ}$	BP	GO:0048643	\mathbf{EF}	regulation of skeletal must be
				development

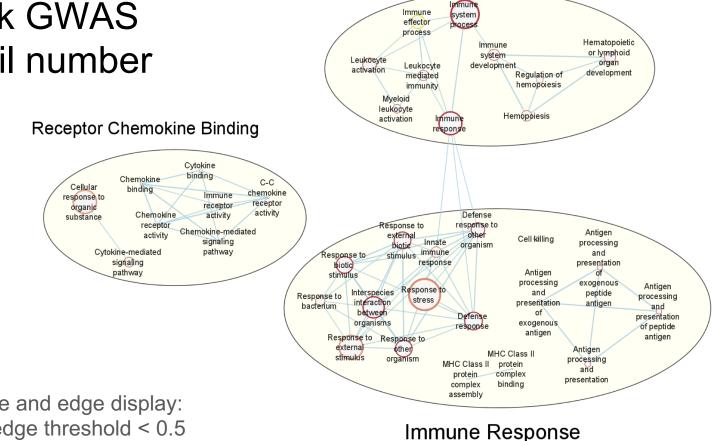
Comparison between BEHST and other tools

- Problem with old method: manually, biased, ad-hoc interpretation

Comparison between BEHST and other tools

- New comparison
 - Create a list of ground-truth GO terms
 - Choose tissue-specific genes from RNA-seq data
 - TPM > 1 and TPM > 5 $\langle TPM_{other} \rangle$
 - Run g:Profiler on these genes
 - Intersect the ground-truth GO term list with the GO terms from
 - BEHST
 - GREAT, GREAT-g:Profiler hybrid
 - ChIP-Enrich, ChIP-Enrich-g:Profiler hybrid
 - GO terms in both lists are true positive terms
 - GO terms only in output list but not ground-truth list are false positive terms

1.0


	embryonic morphogenesis -					
	embryonic organ development -					
	embryonic organ morphogenesis - anterior/posterior pattern specification -					
	embryo development -					
(2() RD tormed)	regionalization -					
GO BP terms	DNA-binding transcription factor activity -					
•••=••••••	sequence-specific DNA binding -					
.	limb morphogenesis -					
found by	DNA-binding transcription factor activity, RNA polymerase II-specific -					
found by	pattern specification process -					
roana sy	animal organ morphogenesis -					
	skeletal system development -					
three	embryonic skeletal system development -					- 1.0
INTEE	limb development -					1.0
	positive regulation of RNA metabolic process - regulation of transcription by RNA polymerase II -					
	positive regulation of transcription by RNA polymerase if -					
	negative regulation of nucleic acid-templated transcription -		_			- 0.8
methods	negative regulation of RNA biosynthetic process -					0.0
IIICUIUUS	negative regulation of macromolecule biosynthetic process -					
	negative regulation of biosynthetic process -					e
	positive regulation of RNA biosynthetic process -					guantile of q-value
	E tube development -					>-b
	negative regulation of cellular biosynthetic process -		_			of
	tube development - negative regulation of cellular biosynthetic process - skeletal system morphogenesis - negative regulation of cellular macromolecule biosynthetic process -		_			tile
	positive regulation of nucleobase-containing compound metabolic process -					- 0.4 tu
	negative regulation of transcription, DNA-templated -					nb
	negative regulation of gene expression -					
	negative regulation of nitrogen compound metabolic process -					
	embryonic skeletal system morphogenesis -					- 0.2
	embryonic limb morphogenesis -					
	negative regulation of RNA metabolic process -					
	heart development -					
	positive regulation of gene expression - regulatory region nucleic acid binding -			_		- 0.0
	negative regulation of nucleobase-containing compound metabolic process -					
	neural tube development -					
	sensory organ morphogenesis -					
	neural tube patterning -					
	positive regulation of macromolecule biosynthetic process -					
	regulation of epithelial cell proliferation –					
	immune system development -					
	hematopoietic or lymphoid organ development -					
	transcription regulatory region DNA binding - appendage morphogenesis -					
	appendage morphogenesis - positive regulation of nitrogen compound metabolic process -					
	positive regulation of net open compound metabolic process -					
	negative regulation of transcription from RNA polymerase II promoter -					
	· · · · · · · · · · · · · · · · · · ·	BEHST	GREAT	ChIP-Enrich	Ground truth	
		DENSI	UNEAT	cim Linich	Siouna ciden	

UK Biobank GWAS Data

- Get 17 anthropometric and blood-panel traits in the UK Biobank
- Select positions where p-value of beta-meta significance test < 10^-8
- Add eQ = 1000 bp to the single positions and run BEHST
- Find clusters of gene sets with Enrichment Map

Application to **UK Biobank GWAS** for Basophil number

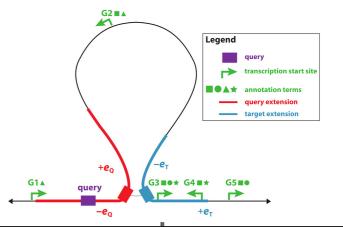
Lymphoid Development Hemopoiesis

Threshold for node and edge display: p-value < 0.001, edge threshold < 0.5

behst.hoffmanlab.org/ X	+					-		đ	×
🗲 🛈 behst.hoffmanlab.org	C Q Search	☆自	ŧ	Â	••••	Ū	8	*	Ξ

BEHST Biological Enrichment of Hidden Sequence Targets

Genomic set enrichment analysis enhanced through integration of chromatin long-range interactions


Chicco D, Bi HS, Reimand J, Hoffman MM. 2017. BEHST – Genomic set enrichment analysis enhanced through integration of chromatin long-range interactions. In preparation.

The free BEHST software package efficiently associates functional enriched Gene Ontology terms to input genomic regions

BEHST reads a dataset of genomic regions, and intersects them with the chromatin interactions available in the Hi-C dataset (Rao et al, Cell, 2014). Of these genomic regions, BEHST selects those that are present in the regulatory regions of genes a dataset of principal isoform annotations. We defined these cis-regulatory regions upon the position of their nearest transcription start site of the genes' principal transcripts, plus an upstream and downstream extension. Afterwards, BEHST selects the genes of the resulting partner loci found in gene regulatory regions, and inserts them into g:Profiler. BEHST, finally, produces the list of the most significant Gene Ontology terms detected by g:Profiler.

Installation

DELICT cap rup on any Linux and Mac computers. You can find the

behst.hoffmanlab.org/ × +								—		đ	×
(i) behst.hoffmanlab.org	C C		Q Search	☆ 自	Ŧ	Â	••••	٩	*	*	Ξ
Upload your files Query regions File upload/ URL (.bed) https://www.pmgenomics.ca/hoffmanlab/proj/behst/data/pressto_LUNG_enhancers.bed Submit Optional parameters and files: Query extension (bp) 24100 Target extension (bp) 9400 Gene annotation (.gtf)		Up	Noad file								^
http://behst.hoffmanlab.org/data/gencode.v19.annotation_withproteinids.gtf Chromosomal interactions (.hiccups)			load file								
http://behst.hoffmanlab.org/data/hic_8celltypes.hiccups Principal transcripts (.bed)		Op	load file								
http://behst.hoffmanlab.org/data/appris_data_principal.bed		Up	load file								

V

g:Profiler - functional profiling of $ imes$ +										—	ð	×
(i) biit.cs.ut.ee/gprofiler/index.cgi			E 🖸	C Q Searc	ch	☆	≜ ∔	î	7 🛄	🕶 🐖	+	Ξ
				ntology 🗹 Biolo	ogical process 🗌 Cellula	ar compoi			ction			^
[?] Query (genes, proteins, probes) [?] ENSG00000000938 ENSG0000003393 [?] ENSG00000003400 ENSG0000003402 [?] ENSG0000005844 ENSG0000006059 [?] ENSG0000007933 ENSG0000013583 [?] ENSG00000013588 ENSG0000019186 [?] ENSG000002181 ENSG0000022556 [?] Out ENSG0000024422 ENSG0000025708 [?] Out Graph [?]	Significant only Ordered query No electronic GO and Chromosomal region Hierarchical sorting rarchical filtering er parent group (stro put type cal (PNG) advanced options	ns R a C X S Y Ba Rd	Direct assay Genetic inte Traceable au Expression p Biological as Reviewed co No biologica Biological pa [?] Regulato [?] Protein o [?] Human	r [IDA] / Mutar raction [IGI] / uthor [TAS] / N pattern [IEP] / spect of ancest omputational a al data [ND] / N athways KEC ory motifs in D databases H Phenotype Ont	[IDA, IPI, IMP, IGI, IEF nt phenotype [IMP] Physical interaction [IM Ion-traceable author [N Sequence or structura cor [IBA] / Rapid diverg nalysis [RCA] / Electro Not annotated or not in GG Reactome NA TRANSFAC TFBS Iuman Protein Atlas di tology (sequence homo in interactions	PI] NAS] / Inf Il similarit gence [IRI nic annot backgrou backgrou miRBa CORUM p	ty [ISS] / C D] ation [IEA] und [NA] ase microRI rotein com	Genomic co] NAs iplexes		GC]		
	g:Orth gy Search	>> g:Sor Expression Simila			> g:Cocoa ompare of Annotations		>> Sta r generate	atic URL	ink			
source term name	, <u>, , , , , , , , , , , , , , , , , , </u>		n ID r t	n.of n.of term query genes genes	n. of corrected common p-value genes	ENSG0000	ENSG 0000			ENSG0000 ENSG0000 ENSG0000	ENSG0000 ENSG0000	ENSG0000 >

g:Pro	filer - functional profiling of $ imes$ +													-	đ	×
() biit.cs. ut.ee /gprofiler/index.cgi	E1 🖸	C	Q Searc	h		1		Ŧ	Â		••••	U ³	*	*	Ξ
source	term name	term ID	n. of term genes	n. of query genes	n. of common genes	corrected p-value	ENSG0000003400 ENSG00000003393 ENSG00000000938	ENSG0000005844 ENSG00000003402	ENSG00000013583 ENSG00000007933 ENSG00000006059	ENSG00000019186 ENSG00000013588	ENSG00000024422 ENSG00000022556 ENSG00000020181	ENSG00000025770 ENSG00000025708	ENSG0000026751 ENSG0000026751 ENSG0000026103	ENSG00000037241 ENSG00000035664	ENSG0000039650	ENSG0000049089 ENSG00000042753
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	cornification keratinization keratinization keratinocyte differentiation epidermis development epidermal cell differentiation skin development epithelial cell differentiation epithelium development complement activation, classical pathway cell death programmed cell death humoral immune response mediated by circulating immunoglobulin complement activation immunoglobulin mediated immune response B cell mediated immuner response B cell mediated immuner response B cell mediated immuner response B cell mediated immuner response lymphocyte mediated immuner response lymphocyte mediated immuner response animal organ development regulation of protein activation regulation of protein activation cascade humoral immune response adaptive immune response based on somatic recombination of immune receptors bui phagocytosis, recognition immune system process adaptive immune response regulation of acute inflammatory response regulation of immune system process positive regulation of immune response activation of immune response positive regulation of immune system process	G0:0070268 G0:0031424 G0:0008544 G0:0009913 G0:0043588 G0:003855 G0:0060429 G0:0006958 G0:0008219 G0:0012501 G0:0002955 G0:0016064 G0:0019724 G0:0009956 G0:0016064 G0:0019724 G0:0009956 G0:0002920 G0:0002920 G0:0002920 G0:0002920 G0:0002920 G0:0002955 G0:0002920 G0:0002920 G0:0002957 G0:0002957 G0:0002959 G0:000257 G0:000250 G0:000250 G0:000250 G0:000250 G0:000250 G0:000250 G0:0002682 G0:000253 G0:000253 G0:000253 G0:000253 G0:000253 G0:000253 G0:000253 G0:000253 G0:000253 G0:000253 G0:000253 G0:000253 G0:0002253 G0:0002253 G0:0002253 G0:0002253 G0:0002253 G0:0002253 G0:0002253 G0:0002253 G0:0002253	107 195 254 327 276 301 507 773 112 1490 1397 115 162 146 148 1208 184 112 234 1768 1812 103 295 227 58 2329 265 127 1179 670 578 873	621 621 621 621 621 621 621 621 621 621	39 42 45 51 46 47 61 76 24 108 28 26 26 26 20 28 20 29 109 111 18 18 32 27 13 131 29 19 78 52 47 62	1.17e-25 9.97e-18 1.41e-15 1.88e-15 7.04e-15 4.41e-14 2.95e-13 3.82e-12 3.45e-09 3.84e-09 4.99e-09 6.33e-09 1.25e-08 3.58e-08 4.93e-08 8.96e-08 2.85e-07 7.61e-06 1.79e-05 4.07e-05 4.07e-05 4.13e-05 6.59e-05 6.59e-05 7.87e-05 1.41e-04 2.86e-04 3.61e-04 3.71e-04 4.84e-04 7.21e-04			A I I I I <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
BP <	phasocutosis	GD:0006909	263	621	28	8.35e-04										>

Concept and methodology in the preprint: <u>https://doi.org/fm2z</u>

New evaluation procedure, GWAS applications: Revised preprint coming soon!

Acknowledgments

The Hoffman Lab

Samantha Wilson Linh Huy Eric Roberts Coby Vine Mickaël Mendez Jeffrey Niu Annie Lu Aparna Go Leo Li Esther Yu


n **Linh Huynh** s Coby Viner z Jeffrey Niu u Aparna Gopalakrishnan i Esther Yu

Natalia Mukhina

Davide Chicco Sarah Bi Jüri Reimand Hae Kyung Im Wail Ba-Alawi Anna Narday Zhibin Lu Carl Virtanen

Funding

Canadian Institutes of Health Research; Princess Margaret Cancer Foundation; Natural Sciences and Engineering Research Council of Canada; Ontario Institute for Cancer Research; Ontario Ministry of Economic Development, Job Creation and Trade; Medicine by Design; McLaughlin Centre Princess Margaret Cancer Centre is also hiring principal investigators in computational cancer biology with a multi-omics focus!

Postdoctoral, MSc, PhD positions available in my research lab at the

Princess Margaret Cancer Centre

Dept of Medical Biophysics Dept of Computer Science University of Toronto

Please approach me for details.

Michael Hoffman https://hoffmanlab.org/

michael.hoffman@utoronto.ca

@michaelhoffman