

Canadian Bioinformatics Workshops

www.bioinformatics.ca bioinformaticsdotca.github.io

Creative Commons

This page is available in the following languages:
Afrikaans Surrapcou Català Dank Deutach EJAnywok Engish English (CA) English (CB) English (US) Esperanto
Castellano Castellano (AR) Espeñol (CL) Cestellano (DD) Esperanto (Castellano (MX) Castellano (PE)
Euskara Suomeksi français français (CA) Galego יייבו hrvatski Magyarı Italiano 日本語 한국이 Macedonian Melayu
Nederlands Norak Sesotho sa Leboa polski Portuguds românsi slovenski jezik супсы srpaki (lafinica) Sotho svenska
中文 學話(台灣)isiZulu

Attribution-Share Alike 2.5 Canada

You are free:

to Share — to copy, distribute and transmit the work

to Remix - to adapt the work

Under the following conditions:

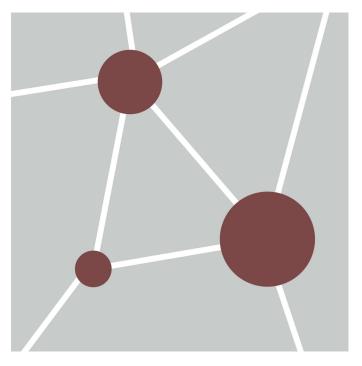
Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar licence to this one.

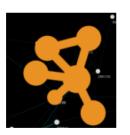
- . For any reuse or distribution, you must make clear to others the licence terms of this work.
- . Any of the above conditions can be waived if you get permission from the copyright holder.
- The author's moral rights are retained in this licence.

Your fair dealing and other rights are in no way affected by the above.
This is a human-readable summary of the Legal Code (the full licence) available in the following languages:
English Fench

Learn how to distribute your work using this licence


Gene Regulation and Motif Analysis Practical Lab

Veronique Voisin


Pathway and Network Analysis of –omics Data

July 27-29, 2020

iRegulon

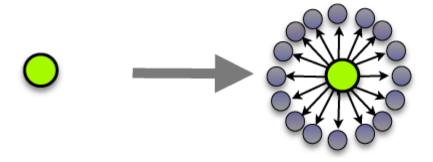
http://iregulon.aertslab.org/

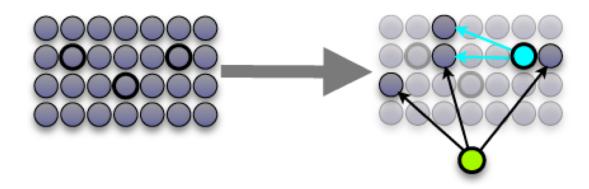
- Cytoscape app
- Developed to find transcription factor targets in a set of co-regulated genes
- Use precomputed results:
- * precomputed occurrence of transcription motifs and chip-Seq peaks in promoter of all genes in genome
- * rank all genes in genomes based on this result for each known transcription factor

Learning Objectives

This practical lab focuses on finding potential transcription factors that would regulate our gene list.

We are using 2 tools


- EnrichR which is a web app doing enrichment analysis.
- IRegulon which is a Cytoscape app applying a GSEA like algorithm.

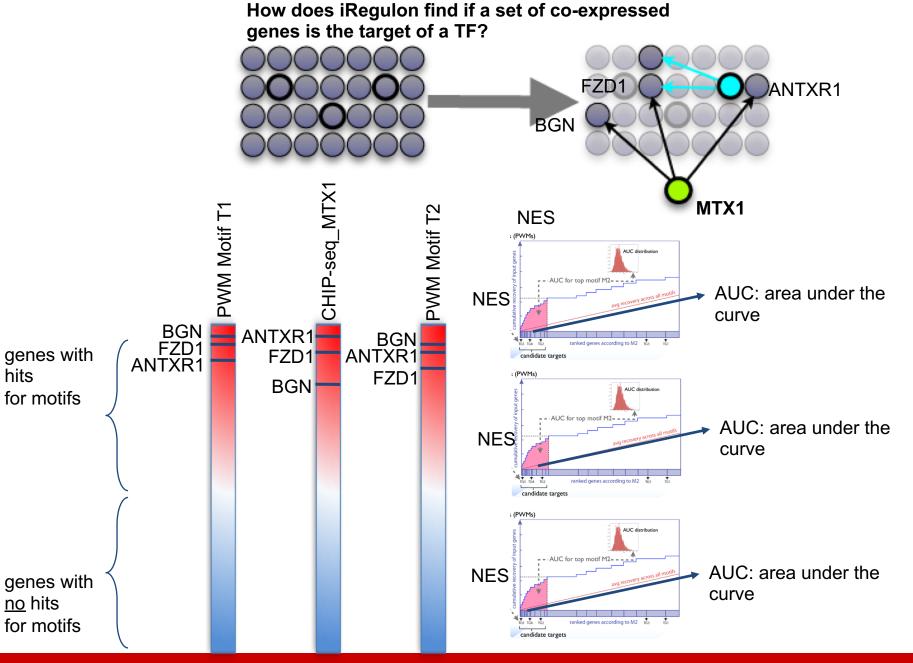

We are using iRegulon to answer 2 questions:

- 1) Find the targets of a transcription factor of interest
 - Advantages: Targets are displayed as a network, we can overlay extra information of the created network like node colors.

• 2) Given a set of genes, found if these genes are co-regulated by some transcription factors listed in the iRegulon database.

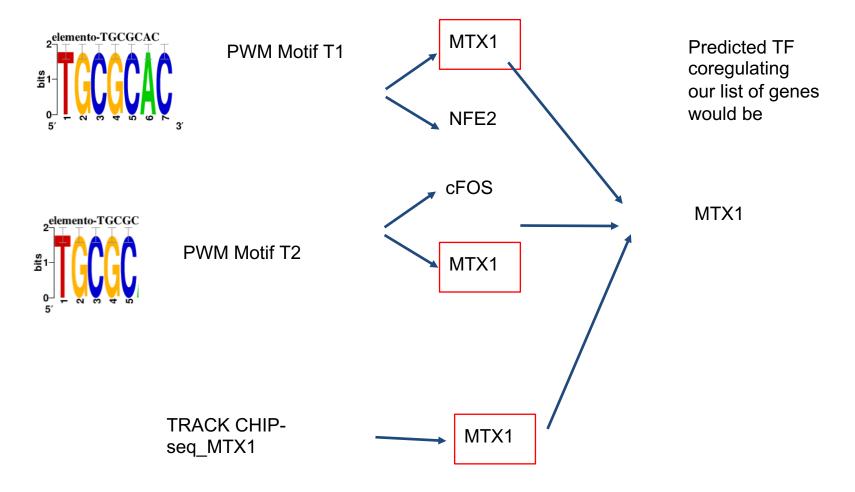
iRegulon uses:

Position Weight Matrix (PWM) (+transcription factor predicted binding site)

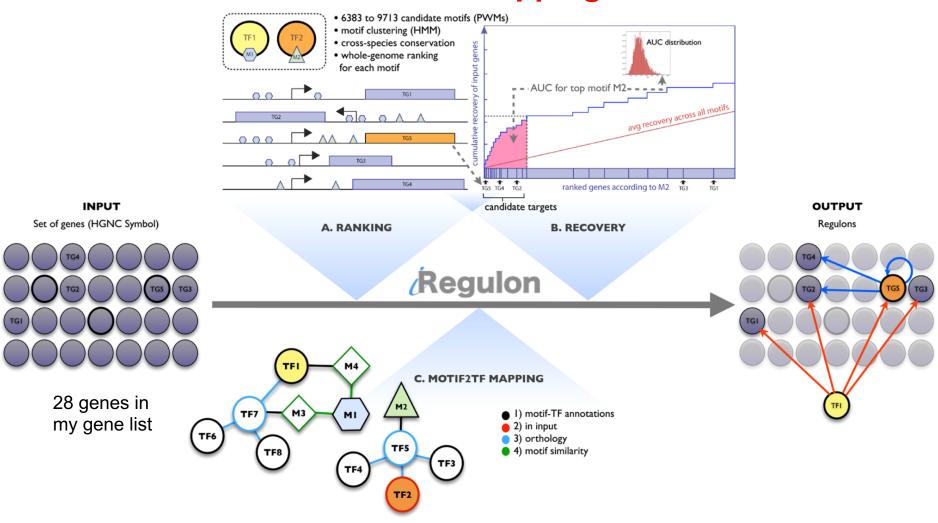

and

 CHIP-Seq data (immunoprecipitation of chromating using an antibody specific to a TF of interest + DNA sequencing)

To estimate transcription factor binding on promoter of genes of interest

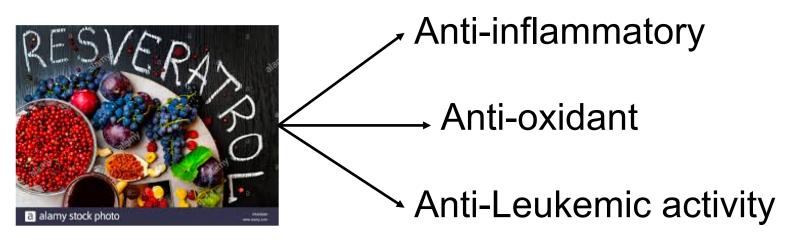

Description of the motif and track collections used.

Source	ce Organism(s) T		# motifs "6K"	# motifs "10K"	# tracks "1K ChIP"	
Elemento [73]	Drosophila	Predicted (conserved) ^a	371	371	-	
FlyFactorSurvey [75]	Drosophila	B-1H, others (e.g., FlyReg)	614	652	-	
hPDI [77]	Human	Experimental	437	437	-	
Jaspar [21]	Multiple species	Iltiple species Curated 1315 1315		1315	-	
SelexConsensus [76]	Drosophila	Drosophila Curated (FlyReg) 38		38	-	
Stark [74]	Drosophila	Predicted (conserved) ^a	228	228	-	
Tiffin [76]	Drosophila	Predicted (gene sets) ^a	120	120	-	
TRANSFAC PUBLIC [5]	Multiple species	Curated, ChIP-chip	398	398	-	
TRANSFAC PRO [5]	Multiple species	Curated, ChIP-chip	1153	1850	-	
YetFasco [78]	Yeast	Uniprobe, Curated, ChIP-chip	1709	1709	-	
ENCODE [79]	Human	Predicted (from DHS) ^a	÷	683	-	
Factorbook [46]	Human	ENCODE ChIP-Seq motifs	-	79	-	
Taipale [132]	Human, Mouse	ise HT-Selex - 820		820	-	
iDMMPMM [133]	Human	footprints, Selex, b1h, peaks	peaks - 39		-	
SwissRegulon [134]	Human	Curated - 190		190	-	
Wolfe [135]	Drosophila	ZFP motifs	-	36	-	
HOMER [116]	Multiple species	ChIP-Seq Motifs, others (e.g. ENCODE)	-	1865	-	
Dimers [136]	Human	Predicted dimers	-	603	-	
ENCODE ChIP-Seq [23]	Human	-	-	-	999	
Taipale ChIP-Seq [24]	Human		-	-	117	
p53 and control ChIP-Seq (this study)			-	-	2	
Total			6383	11611 (9713 nr)	1118	

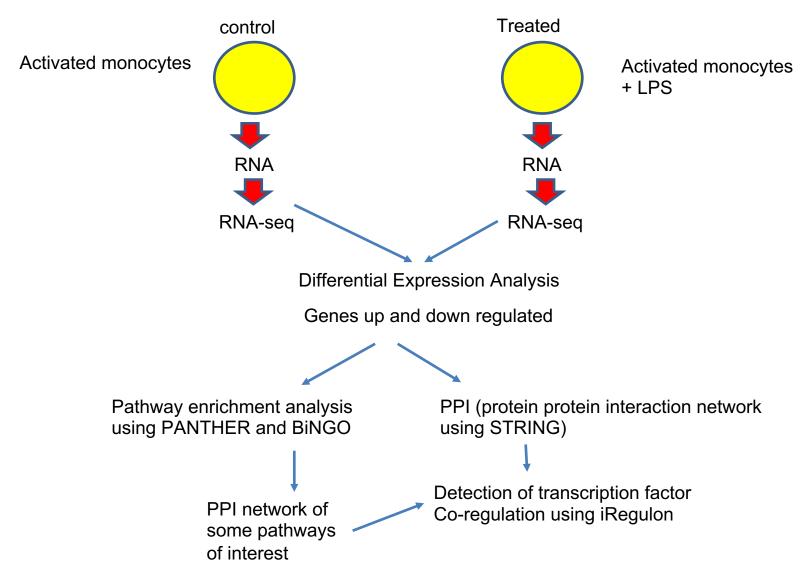


From Motifs, Tracks to Transcription Factor

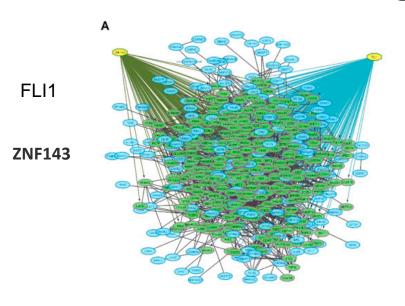
Motif2Fmapping



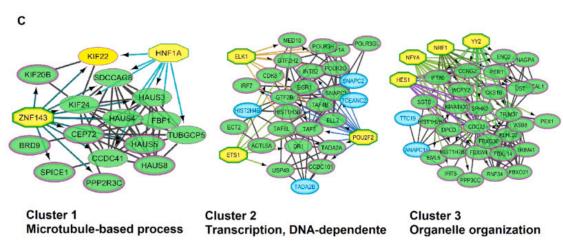
Motif2Fmapping

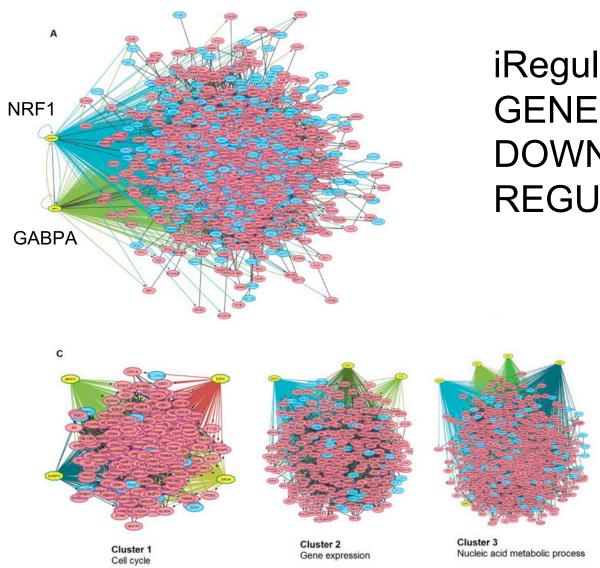

Example of a published paper using iRegulon

Resveratrol decreases the expression of genes involved in inflammation through transcriptional regulation



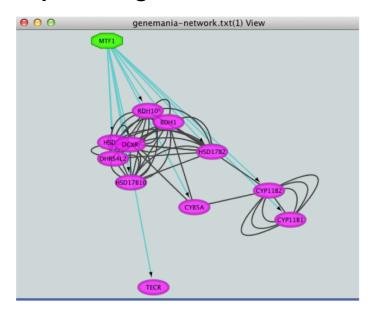
https://www.sciencedirect.com/science/article/pii/S0891584918314886?via%3Dihub


Resveratrol decreases the expression of genes involved in inflammation through transcriptional regulation

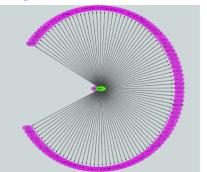

Resveratrol decreases the expression of genes involved in inflammation through transcriptional regulation

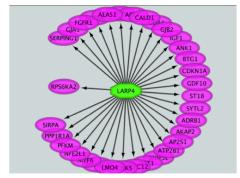
iRegulon on GENES UP REGULATED

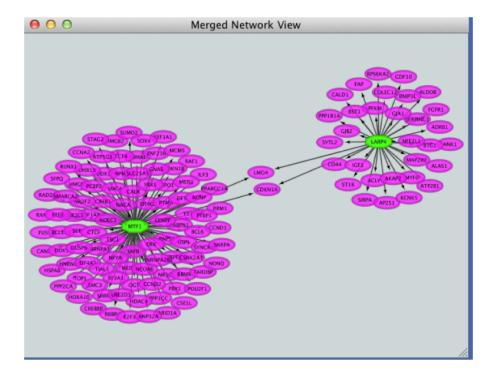
Resveratrol decreases the expression of genes involved in inflammation through transcriptional regulation



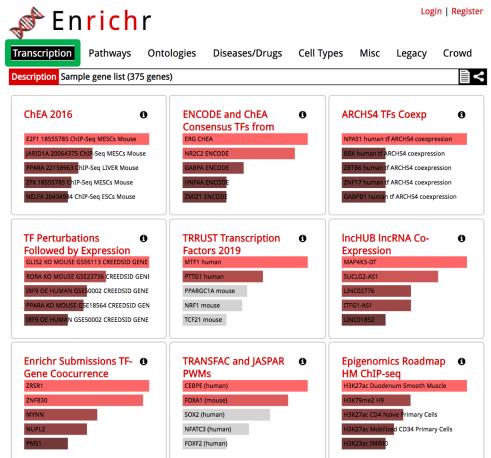
iRegulon on GENES DOWN REGULATED


The prediction of master regulators using the iRegulon tool showed nuclear respiratory factor 1 (NRF1) and GA-binding protein alpha subunit (GABPA) as the main regulators of the downregulated genes


iRegulon practical lab.


Exercise 1. Detect regulons from coexpressed genes

Exercise 2. Create a metatargetome using iRegulon and merge 2 networks in Cytoscape.


Input can be a gene list or a bed file

Note: a bed file contains chromosome coordinated of the peaks identified for example in ATACseq or ChipSeq experiments. Consider filtering peaks in region proximal to associated genes like in promoter regions.

Choose an input file to upload. Either in BED format or a list of genes. Try an example BED file. Choose File No file chosen Paste a list of valid Entrez gene symbols on each row in the text-box below. Try a gene set example. O gene(s) entered

- Test: Fisher's exact test, with a pvalue corrected for multiple hypothesis testing
- Output: a downloadable table or graphs
- No option to put a reference background: use only if you are doing a whole genome study!
- Enrichr has a vast variety of gene-set sources.
- In this practical lab, we are only going to focus on "Transcription".
- Possibility to download a result of interest and create an enrichment map in Cytoscape using the Generic/gProfiler/Enrichr format

Enrichr output table

Fisher's exact test

Term	Overlap	P-value	Adjusted P-value	Old P-value	Old Adjusted	Odds Ratio	Combined Score	Genes
NR5A1 human	8/22	1.86E-16	1.06E-13	0	0	151.515152	5488.395484	HSD3B2;STAR;CYP11A1;CYP11B2;CYP11B1;HSD3B1;CYP19A1;CYP17A1
NR5A2 human	5/12	5.02E-11	1.43E-08	0	0	173.611111	4117.076135	HSD3B2;STAR;CYP11A1;CYP11B1;CYP19A1
NR5A1 mouse	5/23	2.09E-09	3.98E-07	0	0	90.5797101	1810.220371	STAR;CYP11A1;CYP11B2;CYP19A1;CYP17A1
NR4A1 human	4/15	3.91E-08	5.58E-06	0	0	111.111111	1895.289459	HSD3B2;STAR;CYP11A1;CYP17A1
CREB1 human	6/90	7.39E-08	8.44E-06	0	0	27.777778	456.1178554	AR;CYP11A1;CYP11B2;CYP11B1;CYP19A1;CYP17A1
NR0B1 human	3/10	1.54E-06	1.46E-04	0	0	125	1673.092298	STAR;CYP19A1;CYP17A1
NR0B1 mouse	3/11	2.11E-06	1.72E-04	0	0	113.636364	1484.996478	STAR;CYP11A1;CYP19A1
SF1 human	3/12	2.81E-06	2.01E-04	0	0	104.166667	1331.455379	STAR;HSD3B2;CYP11A1
SF1 mouse	3/15	5.78E-06	3.67E-04	0	0	83.333333	1005.029762	STAR;CYP11A1;CYP17A1
SP1 human	8/472	1.49E-05	8.53E-04	0	0	7.06214689	78.4727961	AR;STAR;HSD17B1;HSD17B2;HSD3B1;HSD17B11;CYP19A1;CYP17A1
NR2F1 human	2/9	2.01E-04	0.010427214	0	0	92.5925926	788.2250101	CYP19A1;CYP17A1
GATA6 human	2/9	2.01E-04	0.009558279	0	0	92.5925926	788.2250101	CYP11A1;CYP17A1
NR4A1 mouse	2/10	2.51E-04	0.011011909	0	0	83.333333	690.9348177	AR;HSD3B1
JUN human	4/149	4.46E-04	0.018198668	0	0	11.1856823	86.2946171	AR;STAR;CYP11A1;CYP19A1
			$\overline{}$					

gene-set (pathway)

Overlap:

Numerator -> # of genes in my gene list and tested gene-set

Denominator -> # of genes in the original gene-set

FDR:

Correction for multiple hypothesis testing

List of genes in the overlap

We are on a Coffee Break & Networking Session

Workshop Sponsors:

