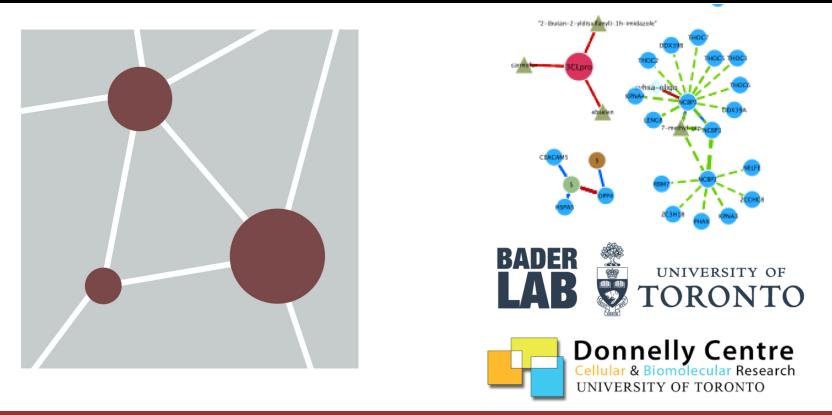



Canadian Bioinformatics Workshops

www.bioinformatics.ca bioinformaticsdotca.github.io

Module 3: Network Visualization with Cytoscape


Module 3: Network Visualization with Cytoscape

Module 3 Network Visualization and analysis with Cytoscape

Ruth Isserlin

Pathway and Network Analysis of –omics Data

July 27-29, 2020

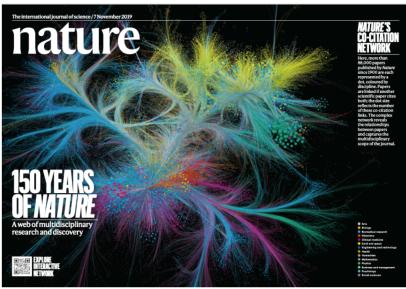
Module 3: Network Visualization with Cytoscape

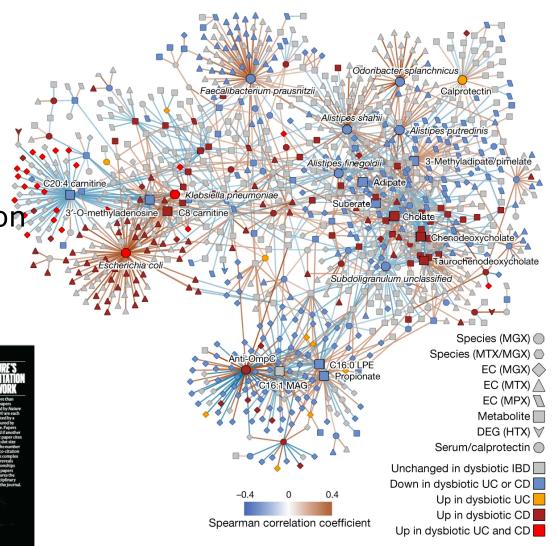
Learning Objectives

- By the end of this lecture, you will:
 - Understand the advantages of network visualization.
 - Understand how to choose and install Cytoscape Apps
 - Be able to use basic Cytoscape features
 - Be able to create and optimize a network in Cytoscape

Network Visualization and Analysis Outline

- Introduction
- Network Basics
- Network Visualization
- Network Analysis
- Demo: Cytoscape software tool for Network visualization and analysis


Six Degrees of Separation

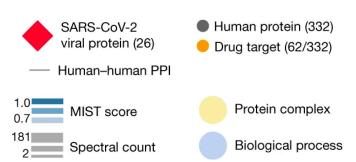

- Everyone in the world is connected by at most six links.
- Originally demonstrated by Stanely Milgram at Harvard in 1960s in an experiment to find how many random acquaintances it would take to connect two people.... sometimes defined as the the **social distance** between two people.
- Popularized in the 1990s with six degrees of Kevin Bacon.
- Demonstrated the interconnectivity of our social structures.
- Networks exists everywhere power grids, cell tower networks, Fed ex delivery networks, supply chain networks
- Is this Biologically relevant?

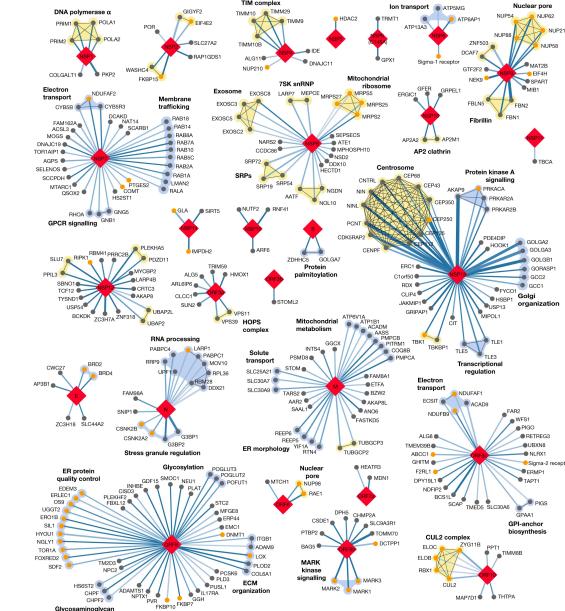
Why Networks?

Networks are everywhere....

- Molecular networks
- Cell-Cell Communication
- Nervous systems
- Social Networks

Lloyd-Price, J., Arze, C., Ananthakrishnan, A.N. *et al.* Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. *Nature* **569**, 655–662 (2019)


Module 3: Network Visualization with Cytoscape

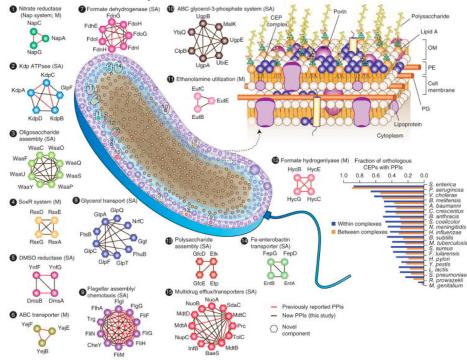

SARS=CoV-2 protein-protein interaction Network

Why Networks?

Networks are powerful tools....

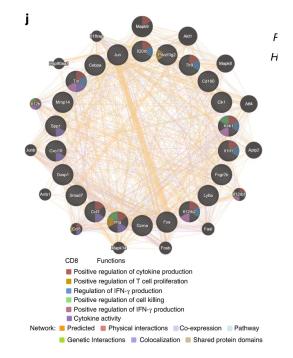
- Reduce complexity
- More efficient than tables
- Great for data integration
- Intuitive visualization

Gordon, D.E., Jang, G.M., Bouhaddou, M. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468 (2020).


Module 3: Network Visualization with Cytoscape

Why Would We Use Network Visualization for Biological Data?

- Represent relationships of biological molecules
 - Physical, regulatory, genetic, functional interactions
- Useful for discovering relationships in large data sets
 - Better than tables in Excel
- Visualize multiple data types together
 - Discover interesting patterns
- Network analysis
 - Finding sub-networks with certain properties (densely connected, co-expressed, frequently mutated, clinical characteristics)
 - Finding paths between nodes (or other network "motifs")
 - Finding central nodes in network topology ("hub" genes)


Applications of Network Biology

Detection of protein complexes/other modular structures – identification of subnetworks of interconnected nodes that might work together to perform a specific function, i.e. molecular complexes.

Gene Function Prediction -

associate novel gene to existing function or pathway

Wang, Z., Aguilar, E.G., Luna, J.I. *et al.* Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. *Nat Med* **25**, 141–151 (2019)

Babu M, Bundalovic-Torma C, Calmettes C, et al. Global landscape of cell envelope protein complexes in Escherichia coli. *Nat Biotechnol*. 2018;36(1):103-112

Module 3: Network Visualization with Cytoscape

Applications of Network Biology

Subnetwork based diagnosis -

biomarker or biomarker panel. Identification of subnetworks activated in disease

Network Alignment and comparison– analyze evolution of networks between different species to identify similarities and evolutionary relationships

Motif analysis – discover higher order organization such motifs, feedback loops (small network patterns that are overrepresented when compared to a randomized version of the same network)

Pathway based gene

association – uncovering common pathways disturbed during disease.

Network Basics

TPO1

Node (molecule/entity)


- Gene
- Protein
- Transcript
- Drug
- MicroRNA

. . .

.

Edge (interaction/relationship)

- Genetic interaction
- Physical protein interaction
- Co-expression
- Metabolic reaction
- DNA-binding

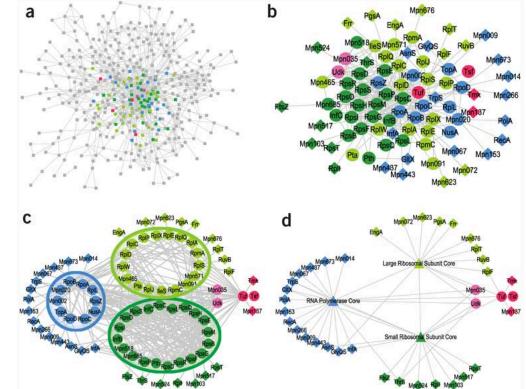
Module 3: Network Visualization with Cytoscape

Networks as Tools

Analysis

- Hubs and subnetworks
- Classify, cluster, diffuse and over-representation
- Data integration

Topological properties:


Number of nodes and edges Node degree Degree distribution Clustering coefficients

Networks as Tools

Visualization

- Data overlays integrate multiple data types
- Layouts
- Exploratory analysis
- Context and interpretation
- (a) Mass spectrometry analysis: 400 PPI in pneumonia microbe.
- (b) Subnetwork with functional annotations
- (c) Same network as (b) with added knowledge of complexes
- (d) Same network as (c) with complexes collapsed to group nodes to reduce complexity

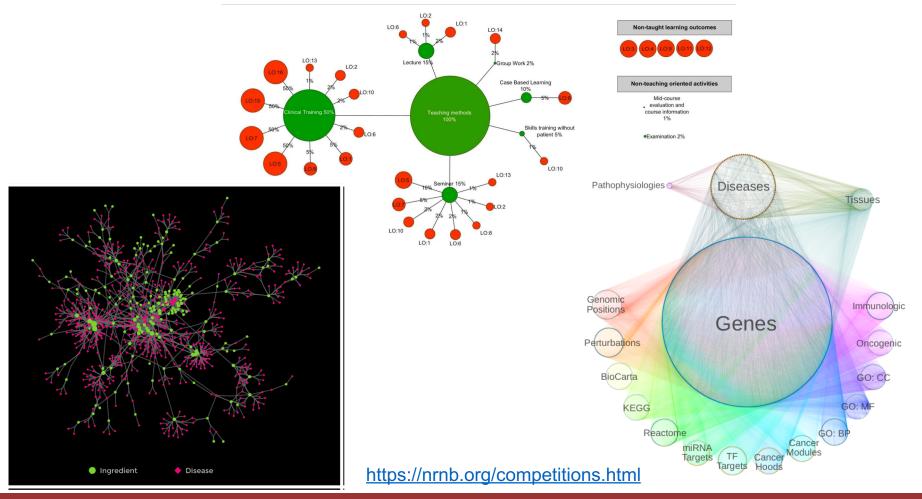
Gehlenborg N, O'Donoghue SI, Baliga NS, et al. Visualization of omics data for systems biology. *Nat Methods*. 2010;7(3 Suppl):S56-S68

Module 3: Network Visualization with Cytoscape

What's Missing?

- Dynamics
 - Pathways/networks represented as static processes
 - Difficult to represent a calcium wave or a feedback loop
 - More detailed mathematical representations exist that handle these e.g. Stoichiometric modeling, Kinetic modeling (VirtualCell, E-cell, ...)
 - Need to accumulate or estimate comprehensive kinetic information
- Detail atomic structures
- Context cell type, developmental stage

What Have We Learned?


- Networks are useful for seeing relationships in large data sets
- Important to understand what the nodes and edges mean
- Important to define the biological question know what you want to do with your gene list or network
- Many methods available for gene list and network analysis
 - Good to determine your question and search for a solution
 - Or get to know many methods and see how they can be applied to your data

Network Visualization and Analysis using Cytoscape

- Network visualization and analysis using Cytoscape software
- Cytoscape basics
- Cytoscape network analysis examples

Cytoscape (cytoscape.org)

 An open source software platform for visualizing and analyzing complex networks.

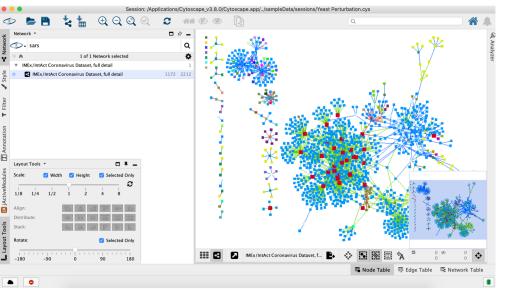
Module 3: Network Visualization with Cytoscape

Cytoscape (cytoscape.org)

Partners and Collaborators

HARVARD MEDICAL SCHOOL

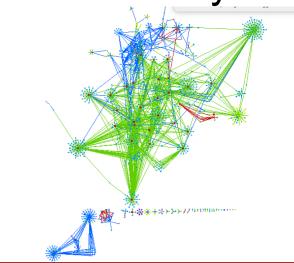
U INDIANA UNIVERSITY


UNIVERSITY OF COPENHAGEN

Module 3: Network Visualization with Cytoscape

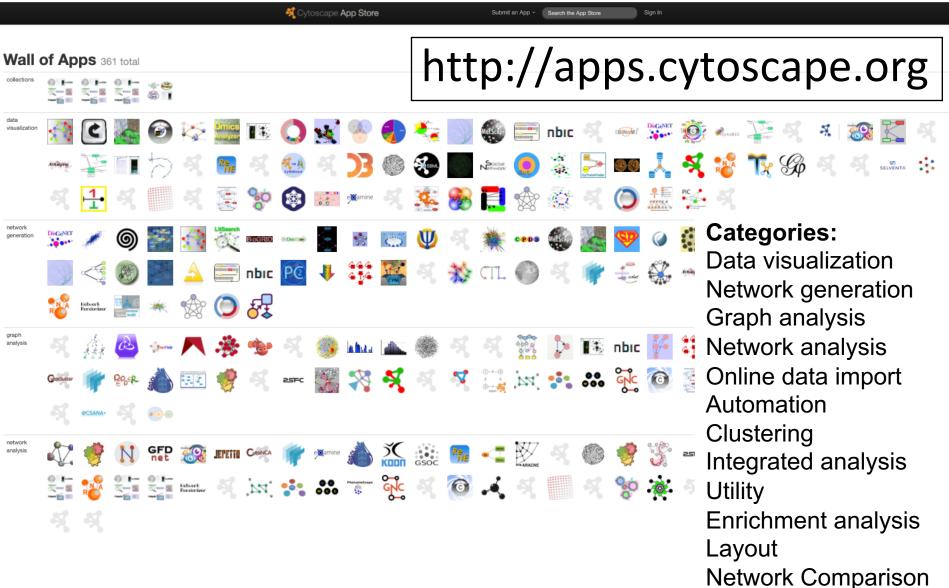
Manipulate Networks

Filter/Query



Network Import

Network 🔻		- ∽ –
DISEASE - Type your query here		≡ Q
GeneMANIA	C	\$
NDEx - Network Search	C	
	C [*]	
STITCH STITCH compound query	C	
DISEASE STRING disease query	C.	
STRING protein query	C.	
STRING PubMed query	C	
WikiPathways		


bioinformatics.ca

Automatic Layout

Module 3: Network Visualization with Cytoscape

The Cytoscape App Store

bioinformatics.ca

Module 3: Network Visualization with Cytoscape

Active Community

http://www.cytoscape.org

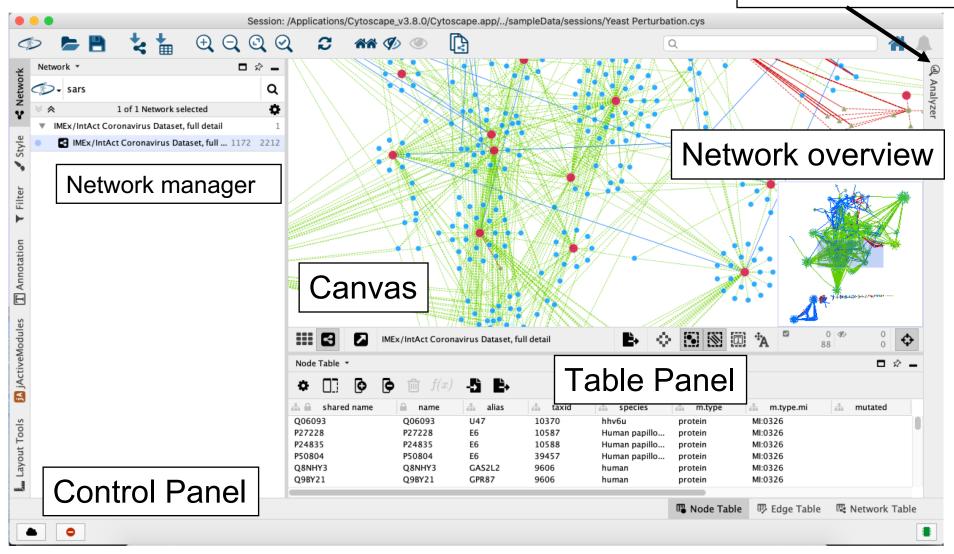
- 10,000s users, >17,600 downloads/month (May 2018)
- Help
 - Documentation, data sets
 - Mailing lists
 - http://tutorials.cytoscape.org
- Automatable through R or python using cyrest
- Cited 2121 (google scholar), 1,437 (ISI web of Science)
- >361 Apps Extend Functionality (July 2020)
 - Build your own, requires programming

Cline MS et al. Integration of biological networks and gene expression data using Cytoscape Nat Protoc. 2007;2(10):2366-82

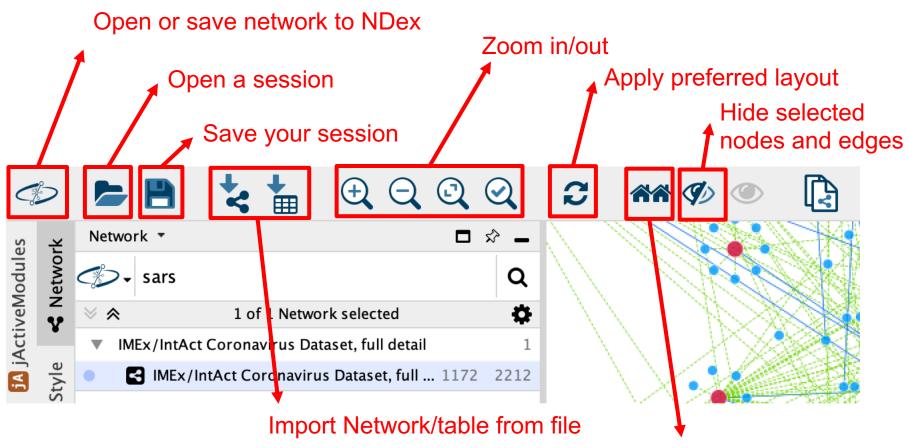
What Have We Learned?

- Cytoscape is a useful, free software tool for network visualization and analysis
- Provides basic network manipulation features
- Apps are available to extend the functionality

Cytoscape Demo

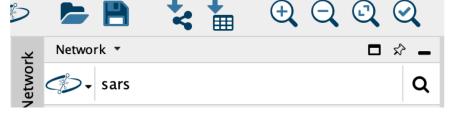

Version 3.8.0

www.cytoscape.org


Module 3: Network Visualization with Cytoscape

Interface Overview

Results Panel


Basic Navigation

Select first neighbours of selected nodes

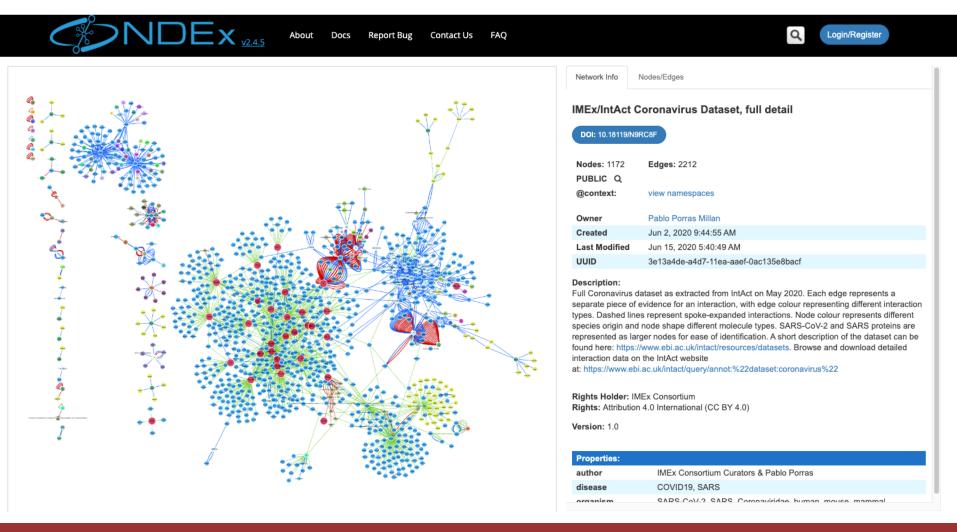
Module 3: Network Visualization with Cytoscape

Load a Network

Enter a search term into Network search bar. I am using Ndex-

(https://home.ndexbio.org/index/)

	Find Networks						
<⊅ND	Ex					Legisland Sign in	
sars	Click on download	arrow	to load	network	into Cy	toscape Q	
esults	name	owner	visibility	nodes 🔺	edges	modified	
Ð	BioGRID: Protein-Protein Interactions (HIV-1)	biogrid	PUBLIC	1146	1338	2020-06-20, 12:40 p.m.	
) ()	BioGRID: Protein-Protein Interactions (X. laevis)	biogrid	PUBLIC	1153	1259	2020-06-20, 12:13 p.m.	
	IMEx / IntAct Coronavirus Dataset, collapsed e	pporras	PUBLIC	1172	1778	2020-06-15, 5:41 a.m.	
Ť	IMEx/IntAct Coronavirus Dataset, full detail	pporras	PUBLIC	1172	2212	2020-06-15, 5:40 a.m.	
€	IMEx/IntAct Coronavirus Dataset, binding regi	pporras	PUBLIC	1172	2212	2020-06-15, 5:40 a.m.	
€	IMEx/IntAct Coronavirus Dataset, mutations de	pporras	PUBLIC	1172	2212	2020-06-15, 5:40 a.m.	
€	WP3888 – VEGFA-VEGFR2 Signaling – Homo sa	wikipathways	PUBLIC	1186	509	2019-12-16, 4:24 p.m.	
Ð	Bandyopadhyay et al., NATURE METHODS (201	rudipillich	PUBLIC	1346	2272	2018-02-07, 3:37 p.m.	
Ð	SMPDB: Protein-Pathway Associations	ndexbutler	PUBLIC	1753	14187	2019-09-19, 9:19 p.m.	
Ť	ProteomeHD – Top 0.5% Co-Regulated Proteins	proteomehd	PUBLIC	2718	63290	2019-09-20, 2:23 p.m.	
Ť	BioGRID: Protein-Protein Interactions (R. norve	biogrid	PUBLIC	4148	7186	2020-06-20, 12:38 p.m.	
Ă	Drughank Database – v4 3	drugbank	PURLIC	4606	9652	2016-05-03 3·40 n m	


WARNING: In some cases, not all network information stored in NDEx will be available within Cytoscape after loading.

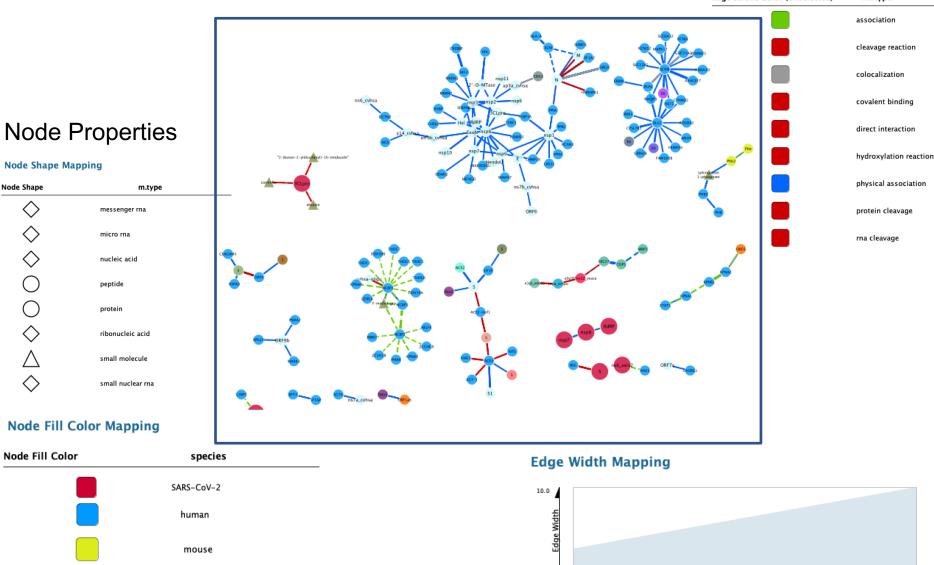
Close Dialog

Module 3: Network Visualization with Cytoscape

About the network

http://ndexbio.org/#/network/3e13a4de-a4d7-11ea-aaef-0ac135e8bacf

Module 3: Network Visualization with Cytoscape


Visual Styles

 $\langle \rangle$

 \diamond

Edge Stroke Color (Unselected) Mapping

Edge Stroke Color (Unselected) int.type

0.0

0.27

0.27

Module 3: Network Visualization with Cytoscape

rat

bioinformatics.ca

0.97

miscore

Experiment with different layouts

Compound Spring Embedder (CoSE) yfiles organic

Spring embedded Force directed

 $+\gamma$

Module 3: Network Visualization with Cytoscape

Circular Layout

Load different types of networks

Androgen Receptor Pathway from WikiPathways (WP138) <u></u> https://www.wikipathways.org/index.php/Pathway:WP138

Module 3: Network Visualization with Cytoscape

We are on a Coffee Break & Networking Session

Workshop Sponsors:

Canadian Centre for Computational Genomics

Module 3: Network Visualization with Cytoscape