

Canadian Bioinformatics Workshops

www.bioinformatics.ca bioinformaticsdotca.github.io

bioinformatics.ca

Module 2 Lab

bioinformatics.ca

Module 2 Lab

Finding over-represented pathways in gene lists: practical lab

Ruth Isserlin

Pathway and Network Analysis of –omics Data

July 27-29, 2020

bioinformatics.ca

Module 2 Lab

Learning Objectives of Module

- By the end of this lab, you will:
 - Be able to run a simple enrichment tool like
 g:Profiler using a gene list and understand the main parameters and output results.
 - Be able to run **GSEA** (Gene Set Enrichment Tool) on a ranked gene list and understand the main parameters and output results.

Part 1:	Р	art 2:
G :Profiler	Gen	E Set Enrichment Analysis
Characteristics:	g:Profiler	GSEA
Input	gene list (thresholded)	ranked gene list (non thresholded)
Statistics	Fisher's exact test (can upload specific background), minimum hypergeometric test	modified Kolmogorov-Smirnov test
Multiple hypothesis testing correction	yes (FDR, Bonferroni, custom)	yes (FDR)
Pathway databases (gene-sets) (choice/ up to date?)	several databases, can check the ones we are interested in, frequently updated	Several choices from MSigDB from GSEA or upload custom ones. <u>link to Baderlab gene-sets</u> both frequently updated
Model organisms	multiple, directly from Ensembl	mostly human through MSigDB but compatible with any model organisms using the custom upload function.
Output	Graphic image or table and compatible with Cytoscape/EnrichmentMap	Table and Compatible with Cytoscape/EnrichmentMap
Software type	Website and R package	Standalone (java) / or can be called and run from command line
		In the trade was actions

Module 2 Lab

Part 1:

Module 2 Lab

Data used for practical lab: **Dataset:** Mutational landscape and significance across 12 major cancer types Exome sequencing Tumor samples and а matched control tissues 100 Detection of points mutations and small Number of mutations per Mb insertions/deletions: somatic variant calls in each cancer type and in each tumor Calculation of mutation frequency: genes mutated in at least 5% of tumors were selected

Genes positively correlated with number of mutation per sample

127 'significantly mutated genes'

gene list

https://www.nature.com/articles/nature12634 (2013)

C>G

KIRC

C>T

GBM

C>A

UCEC

COAD/

READ

HNSC BLCA

A>G

LUAD LUSC

A>C

bioinformatics.ca

Module 2 Lab

0.01

100 75

> 50 25

Ti/Tv frequency (%)

AML

BRCA

g:GOSt Functional profiling	g:Convert Gene ID conversion	g:Orth Orthology search	g:SNPense SNP id to gene name
Query Upload query Upload be Input is whitespace-separated list of gene	ed file es 😡	Options Organism: 🕑	
ACVR2A MECOM LIFR SMC3 NCOR1		Homo sapiens (Human)	<pre>wed gene list: hypergeometric test</pre>
RPL5 SMAD2 SPOP AXIN2 MIR142	gene list	Advance All results Advance Measure underrepresentation	d options A
ERCC2 CDKN2C EZH2 PCBP1		Statistical domain scope Only annotated genes Significance threshold Rapiagini Hackberg EDR	ckground
Run query random example		User threshold ()	ti hypothesis testing
		Numeric IDs treated as ENTREZGENE_ACC	

Data sources V

Custom GMT V

anown as over-representationaSite. In addition to Gene Ontology, we include pathways from KEGG Reactome and
WikiPathways; miRNA targets from miRTarBase and regulatory motif matches from
TRANSFAC; tissue specificity from Human Protein Atlas; protein complexes from CO-
and fungi, plants or metazoaand fungi, plants or metazoaRUM and human disease phenotypes from Human Phenotype Ontology. g:GOSt sup-
ports close to 500 organisms and accepts hundreds of identifier types.

gene sets

g:GOSt performs functional enrichment analysis, also known as over-representation analysis (ORA) or gene set enrichment analysis, on input gene list. It maps genes to known functional information sources and detects statistically significantly enriched terms. We regularly retrieve data from <u>Ensembl database</u> and fungi, plants or metazoa specific versions of Ensembl Genomes, and parasite specific data from WormBase Par-

bioinformatics.ca

Module 2 Lab

Explore results

GO:MF		stats		Σ		,			~	ъ							N		DN	M	
Term name	Term ID	Padj	_o -log ₁₀ (p	≤16	TP53	PTEN	APC	VHL	RID1A	BRM1	EAVN	EGFR	NF1	KN2A	3ATA3	RB1	DTCH1	BXW7	MT3A	AP3K1	FLT3
chromatin binding	GO:0003682	1.129×10 ⁻¹⁹						Т					Т	Τ	Γ				Т		
DNA binding	GO:0003677	1.439×10 ⁻¹⁷											T								
heterocyclic compound binding	GO:1901363	1.909×10 ⁻¹⁶											Т								
transcription regulatory region DNA binding	GO:0044212	2.461×10 ⁻¹⁶									М										
regulatory region nucleic acid binding	GO:0001067	2.646×10 ⁻¹⁶																			
transcription factor binding	GO:0008134	3.594×10 ⁻¹⁶																			
organic cyclic compound binding	GO:0097159	5.430×10 ⁻¹⁶																			
protein kinase activity	GO:0004672	5.123×10 ⁻¹⁵																			
kinase activity	GO:0016301	9.276×10 ⁻¹⁵																			
each row is a gene-set (pathway)	Resul hypoth gene- enrich 5 x 10	t of Fisher's nesis correct sets (pathwa ed at FDR • -2)	exact test tion: ays) are si <0.05 (scie	: + r gnil entif	nuli īca īc r	tiple ntly iota	e / atic	on:		co ou wi	olo ır (th	rec gei th	d b ne e t	lis es	es t tl tec	: g ha d g	len t oʻ len	nes vei ie-:	in Iap set	D	

Note: observe that same genes are included in several enriched gene-sets (pathways).

- Go the the CBW course page and go to module 2.
- Open the 'Lab practical part 1 (g:Profiler)' document.
- Download required files on your computer.
- Do the exercise at your own pace and ask teaching assistants for help or questions.

Part 2:

Module 2 Lab

bioinformatics.ca

Module 2 Lab

Which files do we need to run GSEA?

- A ranked list of genes called the rank file
 - this is a text file (tab separated) that should be renamed to end with the extension .rnk
 - This file has 2 columns :
 - gene identifier
 - ranking values
- A file called a .gmt file that contains the pathway data base (the gene-sets)
 - this is a text file (tab separated) that should end with the extension .gmt
 - the first column contains gene-set names and the additional columns contains the gene names included in each gene-set

How	to	gen	erat	ce t	he rank file			14) 181
						ТОР		
						UP	્રે	ne len
						BGN	5	nm,
genenames	logFC	logCPM	PValue	FDR		ANTXR1	31	sion (
BGN	1.75	9.05	1.73E-33	2.50E-29		FZD1	29	
ANTXR1	1.55	7.50	4.39E-31	3.18E-27	1 1			experience and the second s
FZD1	1.28	5.52	4.41E-30	2.13E-26	1. Calculate the ranking			
COL16A1	1.62	5.09	1.33E-29	4.81E-26	score.			
KLF3	0.13	6.37	8.32E-02	2.04E-01	5012.			
RASEF	0.02	2.38	9.01E-01	9.49E-01	Using Excel:			
ISOC1	0.01	5.24	9.01E-01	9.50E-01	=SIGN(logFC)*-LOG10(pvalue)			1
ANO1	0.03	4.93	9.02E-01	9.50E-01				
CBWD3	-0.27	3.74	8.18E-02	2.02E-01	Using R:	KLF3	1	
GBP4	-1.67	6.63	2.45E-16	2.57E-14	sign(logFC)*-log10(pvalue)	RASEF	0	
TAP1	-1.40	7.80	1.04E-19	2.38E-17		ISOC1	0	1
PSMB9	-1.55	6.52	1.84E-20	5.12E-18	2. Save the file as a	ANO1	0	
edgeR o	utput	gene nan	ne score		tah delimited text and	CRMD3	-1	
0.00.00		BGN	32.76					
		ANTXR1	30.36		with the extension			1
		FZD1	29.36		.rnk			
		COL16A1	L 28.88					
		RASEE	0.05		3.Do keep all genes			
		ISOC1	0.05		in the rank files			
		ANO1	0.04			GBP4	-16	
		CBWD3	-1.09		(e.g.15,000 genes) !	TAP1	- 18	
		GBP4	-15.61		Do not remove non	PSMB9	- 19	
		TAP1	-18.98		significant ones	TOD		
		IPSMB9	-19.73			IOP		
Module 2	Lab					DOWN		bio informatics.ca

Ranked list (.rnk)

gene name score 32.76 BGN 30.36 ANTXR1 FZD1 29.36 COL16A1 28.88 KLF3 1.08 RASEF 0.05 ISOC1 0.05 ANO1 0.04 CBWD3 -1.09 GBP4 -15.61 TAP1 -18.98 -19.73 PSMB9

Save the file as a <u>tab</u> delimited text and with the extension <u>.rnk</u>

Do keep all genes in the rank files (e.g.15,000 genes) ! Do not remove non significant ones.

What does a .gmt file look like?

Gene-set name	Gene-set
MOLYBDENUM COFACTOR BIOSYNTHESIS%HUMANCYC%PWY-6823	molybdenum co
GLYCEROL DEGRADATION I%HUMANCYC%PWY-4261	glycerol degrada
OXIDATIVE ETHANOL DEGRADATION III%HUMANCYC%PWY66-161	oxidative ethance
TETRAPYRROLE BIOSYNTHESIS II%HUMANCYC%PWY-5189	tetrapyrrole bios

* Save as tab delimited text with extension .gmt

	Gene-set name	gene	gene	gene	gene	gene	gene	
YC%PWY-6823	molybdenum cofactor biosynthesis	NFS1	MOCS2	GPHN	MOCS3			
	glycerol degradation I	GK5	GK	GK2				
6PWY66-161	oxidative ethanol degradation III	CYP2E1	ACSS2	ACSS3	ALDH3A2	ACSS1	ALDH2	
′- 5189	tetrapyrrole biosynthesis I	ALAS2	ALAD	UROS	HMBS	ALAS1		

Where to find a .gmt file?

If your model organism is Homo sapiens, you don't need to create your own:

- you can use directly the MSigDB within GSEA
- you can use the Baderlab gene-set file which is a frequently updated .gmt file which gathers public Gene Ontology and pathways from different sources.

If your model organism is Mus musculus:

• you can use the Baderlab gene-set file

If your model organism is different and you need to run GSEA:

 get (access or download) the Gene ontology database directly from biomart / Ensembl and parse it as a .gmt file (see last slide for example code).

MSigDB database

https://software.broadinstitute.org/gsea/msigdb/

C2: curated gene sets (browse 4738 gene sets)	Gene sets curated from various sources such as online pathway databases, the biomedical literature, and knowledge of domain experts. The gene set page for each gene set lists its source. The C2 collection is divided into two sub-collections: CGP and CP. details	Download GMT Files gene symbols entrez genes ids
CP:REACTOME: Reactome gene sets (browse 674 gene sets)	Gene sets derived from the Reactome pathway database.	Download GMT Files gene symbols entrez genes ids
C5: GO gene sets (browse 5917 gene sets)	Gene sets that contain genes annotated by the same GO term. The C5 collection is divided into three sub-collections based on GO ontologies: BP, CC, and MF. details	Download GMT Files gene symbols entrez genes ids
BP: GO biological process (browse 4436 gene sets)	Gene sets derived from the GO Biological Process Ontology.	Download GMT Files gene symbols entrez genes ids
H: hallmark gene sets (browse 50 gene sets)	Hallmark gene sets summarize and represent specific well-defined biological states or processes and display coherent expression. These gene sets were generated by a computational methodology based on identifying overlaps between gene sets in other MSigDB collections and retaining genes that display coordinate expression. details	Download GMT Files gene symbols entrez genes ids

Module 2 Lab

BaderLab EM_Genesets

http://download.baderlab.org/EM_Genesets/

BaderLab EM_Genesets

- go to http://download.baderlab.org/EM_Genesets/
 - select current release/
 - Human/
 - symbol/
 - save the Human_GOPP_AllPathways_no_GO_iea....gmt file on your computer (right click on the link to save it)

Index of /EM_Genesets/current_release/Human/symbol

Name	Last modified	<u>Size</u>	Description
Parent Directory		-	
symbol_translation_summary.log	2020-06-30 22:44	390	
Human GOBP AllPathways no GO iea July 01 2020 symbol.gmt	2020-06-30 22:44	8.6M	
Human GOBP AllPathways with GO iea July 01 2020 symbol.gmt	2020-06-30 22:44	11M	
Human GO AllPathways no GO iea July 01 2020 symbol.gmt	2020-06-30 22:44	13M	
Human GO AllPathways with GO iea July 01 2020 symbol.gmt	2020-06-30 22:44	15M	
Human AllPathways July 01 2020 symbol.gmt	2020-06-30 22:44	1.5M	
Misc/	2020-06-30 22:44	-	
DrugTargets/	2020-06-30 22:44	-	
DiseasePhenotypes/	2020-06-30 22:44	-	
TranscriptionFactors/	2020-06-30 22:44	-	
miRs/	2020-06-30 22:44	-	
Pathways/	2020-06-30 22:44	-	
<u>GO/</u>	2020-06-30 22:44	-	

GSEA preranked

	GSEA 3.0 (Consists	anicom	
Steps in CSEA analysis	Home NI oad data	a on a Pre-Banked gene list	4 1 1
Load data	GseaPreranked: Run GSEA on a pre-ran	nked (with external tools) gene list	
Run GSEA	Required fields Gene sets database	.gmt	-
Leading edge analysis	Number of permutations Ranked List	1000 \diamond .rnk	
C Enrichment Map Visualization	Basic fields		Hide
Tools Run GSEAPreranked	Analysis name	my_analysis	
S Collapse Dataset	Enrichment statistic Max size: excluc e larger sets	weighted 500	
Chip2Chip mapping	Min size: exclude smaller sets	15	
Analysis history	Advanced fields	weighted = p1	Show
GSEA reports Processes: click 'status' field for results Name Status	Each gene-set will permutated 1000 v random genes to b the null distributio	I be with build on	
Show results folder	🕜 🞺 Reset 🔗 Last	🔒 Command 🕨 Run	
7:29:13 PM 🛛 🕂 9193 [INFO] Made Vdb dir: /User	s/veroniquevoisin/gsea_home/output/jun14		46M of 619M .::

Module 2 Lab

Exploring GSEA results

How to access GSEA results?

ŝ	Run GSEAPreranked		Basi
3	Collapse Dataset		
R	Chip2Chip mapping		Adv
	Analysis history	/	
GSI	A reports		1
Pro	cesses: click 'status' fiel	d for results	
	Name	Status	
17	GseaPreranked	Success	
18	GseaPreranked	··· Success	
19	GseaPreranked	··· Success	
20	🛚 GseaPreranked	··· Success	
21	GseaPreranked	··· Success	

testp1.GseaPreranked.1529078566470

A GSEA result folder contains multiple files:

Index.html will guide you to main result file
The edb folder contains the input files filtered by GSEA
.rpt file can be used in EnrichmentMap to built a network
The main GSEA results are in 2 excel files :

- gsea_report_for_pos_1401563306908.xls
- gsea_report_for_neg_1401563306908.xls

GSEA Report for Dataset MCF7_Expression_matrix

Enrichment in phenotype: ES12 (3 samples)

gene-sets enriched in genes up-regulated in treated cells compared to non-treated samples

- 2120 / 4756 gene sets are upregulated in phenotype ES12
- 665 gene sets are significant at FDR < 25%
- 422 gene sets are significantly enriched at nominal pvalue < 1%
- 612 gene sets are significantly enriched at nominal pvalue < 5%
- <u>Snapshot</u> of enrichment results
- Detailed <u>enrichment results in html</u> format
- Detailed <u>enrichment results in excel</u> format (tab delimited text)
- <u>Guide to</u> interpret results

Enrichment in phenotype: NT12 (3 samples) -

gene-sets enriched in genes down-regulated in treated cells compared to nontreated samples

- 2636 / 4756 gene sets are upregulated in phenotype NT12
- 445 gene sets are significantly enriched at FDR < 25%
- 337 gene sets are significantly enriched at nominal pvalue < 1%
- 601 gene sets are significantly enriched at nominal pvalue < 5%
- <u>Snapshot</u> of enrichment results
- Detailed <u>enrichment results in html</u> format
- Detailed <u>enrichment results in excel</u> format (tab delimited text)
- <u>Guide to</u> interpret results

Dataset details

- The dataset has 20323 features (genes)
- No probe set => gene symbol collapsing was requested, so all 20323 features were used

Gene set details

- · Gene set size filters (min=15, max=500) resulted in filtering out 12503 / 17259 gene sets
- The remaining 4756 gene sets were used in the analysis
- · List of gene sets used and their sizes (restricted to features in the specified dataset)

Gene markers for the ES12 versus NT12 comparison

- The dataset has 20323 features (genes)
- # of markers for phenotype ES12: 9758 (48.0%) with correlation area 49.7%
- # of markers for phenotype NT12: 10565 (52.0%) with correlation area 50.3%
 Detailed cost context of the set of the se
- Detailed rank ordered gene list for all features in the dataset
- Heat map and gene list correlation profile for all features in the dataset

Index.html summary of results

- Give the number or significant gene-sets (pathwaysLink to the GSEA plots (snapshots)
- Link to the GSEA results as tabular format (html or excel format)

Note: you can access the index.html file using the **'Success 5'** link or locate it in the GSEA folder result.

Module 2 Lab

Exploring GSEA Results

	GS follow link to MSigDB	GS DETAILS	SIZE	ES	NES	NOM p-val	FDR q-val	-WER p-val	RANK AT MAX	LEADING EDGE
1	RIBOSOME BIOGENESIS IN EUKARYOTES%KEGG%HSA03008	<u>Details</u>	69	0.76	2.71	0.000	0.000	0.000	2778	tags=65%, list=14%, signal=75%
2	RIBOSOME BIOGENESIS%GO%GO:0042254	Details	61	0.77	2.68	0.000	0.000	0.000	2454	tags=48%, list=12%, signal=54%
3	RRNA PROCESSING%GO%GO:0006364	<u>Details</u>	42	0.80	2.64	0.000	0.000	0.000	2438	tags=45%, list=12%, signal=51%
4	NCRNA PROCESSING%GO%GO:0034470	<u>Details</u>	86	0.69	2.59	0.000	0.000	0.000	3038	tags=43%, list=15%, signal=50%
5	NCRNA METABOLIC PROCESS%GO%GO:0034660	<u>Details</u>	158	0.62	2.53	0.000	0.000	0.000	3311	tags=42%, list=16%, signal=50%
6	RRNA METABOLIC PROCESS%GO%GO:0016072	<u>Details</u>	47	0.76	2.52	0.000	0.000	0.000	2438	tags=43%, list=12%, signal=48%
7	RIBONUCLEOPROTEIN COMPLEX BIOGENESIS%GO%GO:0022613	<u>Details</u>	123	0.64	2.52	0.000	0.000	0.000	3476	tags=46%, list=17%, signal=55%
8	DNA STRAND ELONGATION%GO%GO:0022616	Details	34	0.80	2.50	0.000	0.000	0.000	3149	tags=82%, list=15%, signal=97%

NES: normalized enrichment score FDR: false discovery rate

Excel tables are going to be exported and uploaded in Cytoscape/EM (module 3)

Exploring GSEA Results

NES:2.71 FDR:0.0005

NES:-2.34 FDR: 0.0005

ES: enrichment score; NES: normalized enrichment score; LED: leading edge genes; FDR false discovery rate

Module 2 Lab

Time to start practical part:

- Go the the CBW course page.
- Download or open the Module 2 Lab practical documents.
- Download required files on your computer.
- Do the exercise at your own pace and ask teaching assistant for help or questions.

Links to more tutorials

Step by Step Protocol: Pathway enrichment analysis of - omics data:

https://www.nature.com/articles/s41596-018-0103-9

Notebooks of the protocol: <u>https://github.com/BaderLab/Cytoscape_workflows/tree/</u> <u>master/EnrichmentMapPipeline</u>

We are on a Coffee Break & Networking Session

Workshop Sponsors:

Canadian Centre for Computational Genomics

Module 2 Lab